
Optimal Procurement with Demand Warning 
Greg Calbert a and Rajesh Thiagarajan a 

a Planning and Logistics Discipline, Joint Operations Analysis Division, Defence Science and Technology 
Organisation 

Email: Greg.Calbert@dsto.defence.gov.au, Rajesh.Thiagarajan@dsto.defence.gov.au 

Abstract: In the field of inventory management, substantial research has been conducted on the 
formulation of both prediction and procurement algorithms to meet lumpy unforeseen demands. Often these 
approaches, based on re-order point methods fall short, generating stock outs when procurement lead times 
are long or order quantities are constrained. Fortunately, for certain circumstances in the fields of military 
and commercial planning, there are warnings associated with demand spikes or lumps which can be used in 
the procurement plan. 

In this paper we formulate a dynamic programming approach for the optimal procurement of stock, given 
warning of a demand spikes based on Advanced Demand Information. The dynamic programs formulated are 
based on direct rewards, both during the prior warning period and during the demand spike. During the 
warning period, moderate negative rewards for the procurement of stock are given to avoid the storage of 
unnecessary stock holdings and during the demand spike, large negative rewards are given to stock outs. The 
dynamic program model assumes orders take place only after receipt of goods, that is, production is 
inherently constrained, so multiple orders cannot take place within a single lead time. Consideration of 
capacity constraints is included in the dynamic program formulation.  

Dynamic programs that break this production constraint assumption are formulated, allowing orders between 
the receipts of goods. This results in a large increase in program dimensionality which is estimated. We 
discuss extensions to the problem, including stochastic baseline demands, and combining re-order point 
methods with a dynamic programming ‘meta-controller’ to ensure inventory sustainability.   
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1. INTRODUCTION

This paper examines inventory control policies in the context of military operations. Most literature on the 
control of inventory focuses on inventory procurement policies driven by commercial constraints, such as 
minimising capital stockholdings, avoiding stock outs and minimising overall costs (Porteus, 2002). Some 
modern inventory control literature has focussed on the incorporation of advanced demand information, that 
is, time series information of future demands (as opposed to forecasts of future demands) in developing 
procurement information (Ozer, et al, 2004). 

In military logistics such advanced demand information may be available, given that military operations 
demands are planned, through rate of effort models of demand. Furthermore, a critical parameter influencing 
inventory management in military operations is the warning time. Some operations, such as disaster relief, 
have minimal warning time, whilst other operations may have moderate warning times and logistics 
requirements may be anticipated (Stevens and Ingram, 2013). 

For this paper, we develop a dynamic program that controls inventory procurement decisions, assuming that 
a warning time is available for the procurement of stocks. It is assumed that advanced demand information is 
also available. Cost is not assumed to be a direct factor in the current modelling. Instead, the reward structure 
of the dynamic program reflects two factors. First, prior to a military operation no ‘unnecessary’ stocks 
should be held, as they are costly in terms of purchase, holding costs and perishability. Second, during the 
military operation, it is critical that minimal stock outs occur because of the importance of supply. 

Following this introduction, we develop the states, transitions and reward structure of the dynamic program 
(Section 2). Results of the dynamic program are simulated in Section 3. Section 4 briefly describes 
extensions of this approach, including incorporation of within lead time, unconstrained production orders and 
re-order based approaches to inventory management. Section 5 provides a discussion and conclusions. 

2. THE PROBLEM FORMULATION

In the formulation of this dynamic program, we assume that stocks can be delivered every lead time and not 
continuously, the later being the case for re-order point methods (Blumenfeld, 2001). This assumption may 
be removed, at the cost of a considerable increase in the state-space dimensions of the problem, which we 
discuss in Section 4. Suppose that these delivery or lead-time periods are labelled as1, , ,n N= ⋯ whereN is 
the terminal time of the problem, assumed to be the end of the military operation. It should be emphasised 
that the variablen is not the real time of the system. Rather, this variable specifies the intervals of time length 

,L  whereL is the lead time of delivery for a stock type. In this problem formulation, stock orders are not 
allowed in between deliveries, as is the case for normal reorder point methods, because production is 
constrained. Thus, if the warning time is WT time units and the scenario sustainment length is Sp time units 

then there are at most 1
WT Sp

N
L

 + = −  
  

 deliveries in total. 

In order to formulate the dynamic program, to determine the optimal procurement policy, the states of the 
problem are as follows.  

• Let { }B,CΧ ∈ specify the ‘scenario state’ of the system. Here, Βspecifies the state of the

system before the start of the contingency. That is, a warning of a military scenario
occurring has been issued, however, this scenario has not commenced. Let C specify the
state of the system during the scenario.

• Let nI specify the inventory level at period n  and nD the demand during period n to 1.n +

• Let nQ be the order placed at time ,n N≤ to be received at the next lead-time period, 1.n +

The scenario states, inventory levels and order quantities are illustrated in the following figure 1. 
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Figure 1: Problem formulation for the dynamic program and state variables. 

2.1. The dynamic program 

A reward function is specified for each time period that is dependent on the current inventory level and the 
scenario state, : Xφ × →ℝ ℝ defined by  

{ }
B , 0, ,

0, 0, ,
( , , )

, 0, ,

0, 0, .

n n

n
n

c n n

n

k I I X B

I X B
I B C

k I I X C

I X C

φ

− > =
 ≤ ==  < =
 ≥ =

 (1) 

It is assumed that B B, ,C Ck k k k>> ∈ℝ reflecting the requirement that the reward for having negative stock

levels during the scenario is significantly greater than the stock holding costs prior to the scenario.  

Before formulating the dynamic program we must also define the function, :f X→ℤ  that specifies the 

time or period under which a transition to the occurrence of the scenario takes place, which is simply defined 
by  

B, ,
( )

, .

n WT
f n

C n WT

<
=  ≥

(2) 

Given these definitions, it is now possible to define a value-function for the dynamic program, 
: S× →V ℝ ℝ as the undiscounted sum 

1

( ,B) ( , ( )).
N

o n
n

I I f nφ
=

=∑V  (3) 
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The optimal value function can be found using Bellman’s equation (Bellman, 1954), which is 

( )( ), 1
0

( ( )) max ( , ( )) , ( 1) ,
n

n n n
Q MaxOQ

I f n I f n I f nφ +≤ ≤
= + +V V  (4) 

with the inventory dynamics 1n n n nI I Q D+ = + − and maximum order quantity .MaxOQ

We also impose a terminal reward penalty, 

( , ) ,N N NI C k I= −V      (5)

where Nk ∈ℝ is a small positive constant. This reward function ensures inventory levels approach zero at the

end of the contingency. Capacity constraints can also be factored in. If Cap is the maximum capacity, then  

( , ( )) ,CapCap f n k= −V (6) 

where Capk ∈ℝ is a large positive number.

The optimal policy ( , ( ))n nQ I f nπ∗ ∗= was solved by backwards iteration of the dynamic program (Mangel

and Clark, 1989). Simulations are then used to calculate the behaviour of the policy.  

3. RESULTS AND SIMULATIONS

The behaviour of the dynamic program is assessed by generating a random demand, over the sustainment 
period. Figure 2 shows the inventory level for a demand of 100 units of stock, a warning time prior to the 
scenario of 40 time units, a scenario length of 20 time units. The maximum inventory capacity was assumed 
to be 100 units.   
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 Figure 2: Demand and stock level, assuming maximum order quantities of 10, 20 or 100 units. 

Figure 2, shows that the policy exhibits stock build-up behaviour, if the maximum order quantity is below 
that of the demand. This is seen when the maximum order quantity is 10 units, where procurement 
commences at time 10, 30 units of time before the commencement of the scenario. When the maximum order 
quantity is 100 units, a single order of 100 units will not be considered the optimal policy, as there is no extra 
reward in ordering over and above what is required to keep the stock level dynamics at positive levels. 

Figure 3 shows the policy of the dynamic program, denoted as a contour map over the inventory level and the 

delivery number of order period, denoted by ( , ( )).nI f nπ ∗
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Figure 3: The policy of the dynamic program (optimal order quantitynQ∗ ), as a contour map. The horizontal

axis specifies the inventory level, I and the vertical axis, the delivery period,.n  Colours in the map indicate 
the order quantity that is the policy. The parameters for this simulation were 5, 40, 20,L WT Sp= = = and 

total demand is 100 units. The maximum order quantity, MaxOQ  was 20 units. 

The structure of the inventory policy is as follows. Prior to the commencement of the scenario,,X B=  
(where the delivery period is between 1 and 7) only small orders are made when the inventory level is large. 
Substantial orders are made when the current inventory level is low and we are in the scenario sustainment 
period. If the inventory level is high and we approach the terminal delivery period, no further orders are 
made, to ensure minimal stock levels at the terminal period, to satisfy equation (5).   

4. EXTENSIONS TO INCLUDE WITHIN LEAD TIME ORDERS AND RE-ORDER POINTS

There are various extensions of this simple model to include more complexity. One such extension is to 
assume that orders can take place, not just after the receipt of a previous order, but at any time during the 
decision process. The complexity of the dynamic program increases markedly, because both the inventory 
dynamics and the state of past orders have to be included in the state description. The value function is now 

specified as 1 1 2 2( , , , , , , , , , ( ))k k tt t Q t Q t Q I f t  V ⋯ were the pairs ( , )j jt Q specify the thj order’s time of

delivery and order quantity. If we assume that only one order can be placed per unit time, then 

1 20 .kt t t L≤ < < < ≤⋯  The dynamic program will then take the form

1 1 2 2

2 2 3 3 1 1

1 1 2 2 1

( ,[ , , , , , , ], , ( ))

( 1,[ 1, , 1, , , , ], , ( 1)), 0
max ( , ( )) .

( 1,[ 1, , 1, , , 1, , , ], , ( 1)), 0

k k t

t t
t

Q k k t t

t t Q t Q t Q I f t

t t Q t Q L Q I Q D f t t
I f t

t t Q t Q t Q L Q I D f t t
φ

=

 + − − + − + =
+  + − − − − + > 

V

V

V

⋯

⋯

⋯

(7) 

The dynamic program specified in equation (4) requires approximately 2 1
WT Sp

Cap
L

  +  −       
 variables 

for the value function. The dynamic program specified by equation (7) is of complexity 

( ) ( )2
L LW Sp Cap MaxOQ L+ variables for the value function, where MaxOQ  is the maximum order

quantity. It should be clear that the requirement to store the timing of all forthcoming orders in equation (7) 
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means that the dynamic program does not scale well. For example, with 

100, 100,max 20, 10,W Sp Cap OQ L+ = = = = equation (4) requires approximately 310 variables whilst 

equation (7) requires approximately 1410 variables for the value function, which is clearly not 
computationally feasible.  

Another extension of this dynamic program is to include re-order point methods in the formulation. Here, 
demand is stochastic, and hence the optimisation method is based on a Markov or semi Markov decision 
process (MDP). The MDP will be considered as a ‘Meta inventory controller’ placed over traditional 
prediction based inventory controller, which uses re-order point methods. As with multiple lead time orders, 
there will be a requirement for an expansion of the state description, to include not only inventory levels and 
the scenario state, but also the re-order controller’s prediction of the demand over that inventory period (the 
prediction of demand must be calculated as demand is now stochastic) and transitions between demand 

predictions. The prediction in demand over period n is defined as nD and ROPQ is the re-order quantity

(possibly the economic order quantity) if the inventory level drops below the re-order point, the Markov 
decision process looks like 

1 1 1
0

( , ( ), ) max Pr( | ) ( , ( )) Pr( | ) ( , ( 1), )
n

n n n n n n n n n
Q

D

I f n D D D I f n D D I f n Dφ + + +
=

   = + +  
  
∑ ∑V V (8) 

where 

1

0, ,

, ,

n n
n n n ROP

n n

D L I
I I Q D

Q D L I

σ
σ+

 + <= + − + 
+ ≥

(9) 

which is the standard re-order point equation with safety stock parameter,.σ  Here, the conditional 

probabilities Pr( | )n nD D and 1( | )n nP D D+ need to be defined. Solving the extensions in equations (7) and (8) 

is the subject of current and forthcoming research.   

5. SUMMARY AND FUTURE WORK

Dynamic programming is the basis for most inventory calculations (Porteus, 2002). We have formulated a 
dynamic programming approach tailored to military supply chain circumstances and have shown its 
effectiveness in determining an optimal procurement policy using simulations. A brief account of some 
extensions to the base model was presented. Particularly, an approach to combine the base model with re-
order point method, typically used in real military systems, was discussed. Generally, the dimensionality of 
such MDPs will be too large to be solved analytically; therefore, the next step in this research will be the 
applicable of dynamic program approximation techniques, such as Neuro-dynamic programming (van Roy, et 
al, 1997).  
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