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Abstract: Global optimization problems occur in many fields including mathematics, computer science, en-
gineering, and economics. The purpose of a global optimization algorithm is to efficiently find an objective
function’s global minimum, usually in some bounded region. In this article we consider bound constrained
global optimization, where the search is performed in a box. The global optimization problem is deceptively
simple and it is usually difficult to find the global minimum on general functions. One of the difficulties is that
there is often no way to verify that a local minimum is indeed a global minimum. If the objective function is
convex, for example, the local minimum is also the global minimum. However, many optimization problems
are not convex. Of particular interest in this article are objective functions that lack any special properties such
as continuity, smoothness, or a Lipschitz constant.

This article presents a new algorithm for bound constrained global optimization, called Directed Voronoi
Search (DVS). At each iteration the objective function is evaluated at a batch of points selected from the
optimization region 2. Initially, the points are selected from a uniform distribution over 2. These points form
a set called the training data and are used to construct a Voronoi diagram on 2. The Voronoi diagram partitions
) into a collection of convex polyhedral sub-regions with one point in each sub-region. The objective function
is then evaluated at vertices determined by sub-regions containing points with low function values, and large
sub-regions. The former direct the search to areas where the objective function is presumed to be low, and the
latter shrink large sub-regions to reduce the risk of missing the global minimum. These new points are then
added to the training data, the Voronoi diagram is recalculated, and the method repeats.

In order to establish convergence we require that the objective function is lower semi-continuous and bounded
below. With these relatively mild conditions the DVS algorithm is shown to converge to an essential global
minimizer almost surely. It is also possible to implement a deterministic DVS algorithm. The deterministic
instance is shown to converge to an open set essential global minimizer.

Numerical results show that the DVS algorithm is effective at solving low dimensional global optimization
problems. Comparisons with the DIRECT algorithm and Accelerated Random Search (ARS) are also made.
The DVS algorithm is superior to ARS on the test problems considered and performed similarly to DIRECT.
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1 INTRODUCTION
The bound constrained global optimization problem is of the form

min f(x) subject to x € €, ey
where the search region (2 is defined by an n-dimensional box of the form

Q={zeR":; <z;<wyforalli=1,...,n}.

The objective function f maps 2 into R U {400} and is assumed to be lower semi-continuous. The inclusion
of {400} means the objective can be assigned the value 400 at points or regions where it cannot be evaluated.
This means certain constrained optimization problems can be handled using the extreme barrier approach of
Audet and Dennis (2003), which assigns the value +oo to infeasible points.

Despite the deceptively simple form of (1), finding a global minimum is usually very difficult because there
is often no way to verify that a local minimum is indeed a global minimum. Nevertheless a smorgasbord of
methods have been proposed in the literature to handle a variety of optimization problems. These methods
can be sorted into two main groups — deterministic methods and stochastic methods (also known as random
search or Monte Carlo methods). Stochastic methods (such as genetic algorithms, simulated annealing, multi-
start, and clustering algorithms, see for example Zabinsky (2003); Zhigljavsky (1991)) include an element of
randomness or probability in their design and deterministic methods (such as interval analysis, branch and
bound, and tunnelling methods, see for example Horst and Hoang (1996); Horst and Pardalos (1995)) do not.
Stochastic methods ensure convergence to a global minimum in probability, and deterministic methods tend to
guarantee asymptotic convergence.

The simplest method for solving (1) is to evaluate f at a number of randomly generated points over {2 and
take the best function value as an estimate of the global minimum. This method is called Pure Random
Search (PRS). Unsurprisingly, PRS often performs poorly in practice and a practitioner would usually choose
another method to solve their particular problem. In this section we briefly describe two popular methods that
are used in the numerical results section of this article.

The Accelerated Random Search (ARS) algorithm of Appel et al. (2003) is a stochastic method for solving (1).
ARS evaluates the objective function at points selected from a finite sequence of contracting sub-regions (ini-
tially € itself) centered on the point with the best function value. If a point with a lower function value is found,
or if the sequence is exhausted, the search returns back to €2. This approach may appear counter intuitive, but
can be very effective at refining the current estimate of the global minimum. However, if the current estimate,
T, is only a local minimizer, ARS can perform poorly Price et al. (2012). Let =, be the closest global mini-
mizer to xy. To reduce f below f(z)), ARS needs to find a point in the set L(xy) = {x € Q: f(x) < f(z)}.
If ||xk — .|| is large ARS might only be able to sample L(x) by randomly sampling 2. Thus sampling L(xy,)
can be a low probability event.

DIRECT is a deterministic algorithm that Jones et al. (1993) presented to solve (1). DIRECT generates a
sequence of nested partitions on (2. Each partition consists of a finite number of boxes (initially €2 itself) with
the objective function evaluated at the center of each box. At each iteration one or more boxes are divided into
three smaller, equally sized boxes using two hyperplanes orthogonal to one of the coordinate axes. Dividing a
box in this way means that the center point of the old box will be the center point for one of the new boxes.
Hence, only two function evaluations are required for each box that is divided. The method continues dividing
boxes in this way, generating finer and finer partitions on €2, until stopping conditions are satisfied.

In this article a new optimization method is presented, called Directed Voronoi Search (DVS). The method
evaluates the objective function at points determined by a Voronoi diagram. We begin by introducing the
Voronoi partition on 2. The DVS algorithm is described in Section 3 and convergence results are given in Sec-
tion 4. The algorithm is tested on a selection of bound constrained global optimization problems in Section 5.
Concluding remarks are given in Section 6.

2 VORONOI PARTITION

The Voronoi diagram of a set of points is a partition on R™ that assigns surrounding regions to nearby points.
A Voronoi partition on €2 using a set of points

X={x; €Q:i=1,2,...,N}
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is defined by the set of N convex polyhedral sub-regions
Ai={z € Q: ||z —zil]2 < ||z — aj|s forall j = 1,2,...,N}

for 1 < i < N (see Figure 2). The Voronoi cell for x; is A;, and the notation V; is used to denote the set of
vertices for z;’s Voronoi cell. The set of all vertices, V = {v € V; : i = 1,2,..., N}, is called the Voronoi
vertex set (see Figure 2).

3 THE DVS ALGORITHM

The Directed Voronoi Search (DVS) algorithm consists of a single loop. At each iteration a set of points
with known objective function values, called the training data set 7', is used to determine the Voronoi vertex
set, V. The objective function is then evaluated at points selected from both ) and €2. Selection strategies
are described in the following two subsections. The new points are then added to T, V is recalculated, and
the method repeats. To stop 1" becoming arbitrarily large, points with relatively high function values are
removed from the training data set if |7 > Tnax. The algorithm generates a sequence of points {xy} with
monotonically decreasing objective function values {f(x)}. A statement of the DVS algorithm is given in
Figure 1.

(1) Choose N > 0, Ng > 1, and Ti,.x > N. Evaluate the objective function at N points in 2 and call this
set of points 7. Let ¢ be the best point found and set £ = 0.

(2) Form a Voronoi partition on €2 using 7}, and calculate the Voronoi vertex set, V.

(3) Select a finite number of points from Vy and N point(s) from a uniform distribution over €). Call this
set of points X and evaluate the objective function at each x € X.

4) Set Ti+1 = Ty U X and let xgy;1 be the best point found. If |Tii1| > Taxs the [Tei1| — Tmax
points with the largest f values are discarded. If stopping conditions are not met, increment & and go to
Step (2).

Figure 1. The Directed Voronoi Search algorithm.

3.1 Selection Strategies

There is much freedom in selecting points at Step (3) of the DVS algorithm. Spreading the points evenly over {2
can reduce the risk of missing the global minimum, but will tend to have a slow rate of convergence. Directing
the search where the objective is presumed to be low can increase the rate of convergence to a local minimum,
but may miss the global minimum altogether. In this article we try to strike a balance between both approaches
by evaluating the objective at vertices selected from Pareto optimal Voronoi cells (see Figure 2).

Definition 1. (Pareto Optimal Voronoi Cell). A Voronoi cell containing the sample point x is Pareto optimal
unless there exists a cell containing a point z satisfying both

J()< @) and  m(z) = m(x)
with at least one equality holding strictly, where m(x) is the Lebsegue measure of the cell containing x.

Evaluating the objective at Pareto optimal Voronoi cells means that the cells in Voronoi partitions will not
remain large, and that the point density will increase where the objective function is known to be relatively
low. The former reduces the risk of missing the global minimum and the latter attempts to increase the rate of
convergence.

The stochastic DVS algorithm selects an initial batch of N > 0 points, Tg, from a uniform distribution over €.
Step (3) selects at least one point (N > 1) from a uniform distribution over 2, and a finite number of points
from the k" Voronoi vertex set V). We consider two approaches:

(I). For each Pareto optimal Voronoi cell V;, evaluate the objective function at the vertex which has the
greatest 2-norm distance from x;. If f(x;) < f(z;) for all z; € T, also evaluate the objective at the
vertex which has the least 2-norm distance from x;.

48



B. L. Robertson, et al., Directed Voronoi Search ...

(ID. Same as approach (D), but if f(x;) < f(z;) forall z; € T, evaluate the objective at all the vertices in V;.

Evaluating the objective at the farthest vertex gives the greatest reduction in cell size when the Voronoi partition
is recalculated and keeps the search global. Evaluating the closest vertex on the cell with the best function value
aims to reduce f locally. Approach (II) has a stronger local search component, allowing the algorithm to focus
its search in the neighborhood of a local (potentially global) minimizer.
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Figure 2. 20 points distributed over {2 for the Branin problem. The number next to each point states the
objective function value at that point. (Left) The Voronoi partition on €2, where points in the Voronoi vertex set
are denoted o. (Right) A plot showing which cells are Pareto optimal. Points corresponding to Pareto optimal
Voronoi cells are shown in red. Note that the cell with best function value and the cell with the largest area are
both Pareto optimal.

3.2 Deterministic DVS

A deterministic DVS algorithm is also presented. The deterministic instance selects points from the Halton
sequence, Halton (1960). The Halton sequence is a quasi-random sequence of points that is known to quickly
distribute points evenly over [0,1)” in low dimensions. Furthermore, the Halton sequence generates a dense
set of points in [0, 1)™.

Proposition 1. The Halton sequence {u.}$°, is dense in [0,1)".
Proof. A simple proof is given by Abramson et al. (2009) and Halton (1960) provides a detailed proof. O

The first N points in the Halton sequence are used to give the initial batch of points Tj. Step (3) selects at least
one point from a uniform distribution over 2. These points are selected sequentially from the Halton sequence
(scaled and translated to 2) in the deterministic instance. Hence after k iterations, the objective function has
been evaluated at the first N + k£Ng points in the Halton sequence. The points from V}, are selected from the
Pareto optimal Voronoi cells using either approach (I) or (II) described above.

4 CONVERGENCE

The convergence properties of the Directed Voronoi Search algorithm are analyzed with the stopping condi-
tions removed. This allows us to examine the asymptotic properties of the sequence of iterates generated by
the algorithm. The first convergence result shows that every cluster point of the sequence {z)} generated by
the stochastic DVS algorithm is an essential global minimizer of f with probability one.

Definition 2. (Essential global minimizer). An essential global minimizer x, is a point for which the set

L(z.) ={x e Q: f(z) < f(z.)}

has Lebesgue measure zero.
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If the objective function is continuous, then f(x.) is also a global minimum in the classical sense.

Assumption 1. The objective function f is bounded below and lower semi-continuous on €.

The lower semi-continuous condition precludes the existence of a sequence {x;} converging to a point z, for
which f(z.) — § > f(xy) for some § > 0 when ||z — z.|| < ¢, where € > 0 and sufficiently small.

Theorem 1. The sequence {x\} generated by the Directed Voronoi Search algorithm is an infinite sequence.

Proof. 1tis sufficient to show that the main loop of the algorithm (Steps 2 - 4) is a finite process. The cardinality
of the training data set T}, is bounded above by T},,,x and so Steps 2 and 4 are finite processes. Step 3 evaluates
the objective function at a finite number of points. O

Theorem 2. Each cluster point x. of the sequence {x} generated by the stochastic Directed Voronoi Search
algorithm is an essential global minimizer of f with probability one.

Proof. Assumption 1, Theorem 1, and the fact that €2 is bounded ensure the existence of cluster points in {zy }.

Let x, be any cluster point of {z;} and assume, by contradiction, x. is not an essential global minimizer of
f. The definition of an essential global minimizer ensures there exists a set L(z.) = {z € Q: f(z) < f(x\)}
with positive Lebsegue measure. Step 3 selects at least one random point from € at each iteration and so €2 is
sampled infinitely often. Therefore, the probability that L is sampled is at least

lim 1— (1 —m(L)/m(Q)" = 1.

k—o0

Hence, limy_, o f(zx) < f(x.) almost surely, which contradicts the lower semi-continuous assumption on f.
Thus, x, must be an essential global minimizer of f, almost surely. O

The following theorem shows that the deterministic Directed Voronoi Search algorithm converges to an open
set essential global minimizer.

Definition 3. (Open set essential global minimizer). An open set essential global minimizer x4 is a point
whose function value fy is not more than the supremum of the values fo € R for which the level set

L(fo) = {z € Q: f(z) < fo}

contains no open ball of positive radius.

To show that the deterministic DVS algorithm converges to an open set essential global minimizer it is sufficient
to show that the algorithm generates a dense set of points in 2.

Theorem 3. Each cluster point x, of the sequence {x} generated by the deterministic Directed Voronoi
Search algorithm is an open set essential global minimizer of f.

Proof. Assumption 1, Theorem 1, and the fact that 2 is bounded ensure the existence of cluster points in {z }.

Let x, be any cluster point of {z;} and assume, by contradiction, ., is not an open set essential global
minimizer of f. The definition of an open set essential global minimizer ensures there exists an open ball
L C Q) on which the objective function is less then f(z.). Proposition 1 shows that the Halton sequence is
dense in €2 and Step (3) selects points sequentially from the Halton sequence. Hence, there exists a & for which
xy € L, giving f(zx) < f(z.). The sequence {f(x))} is monotonically decreasing, so f(x) < f(x.) for
all k sufficiently large, contradicting the lower semi-continuity of f. Thus, x, must be an open set essential
global minimizer of f. O

5 NUMERICAL RESULTS

In this section we investigate the performance of the DVS algorithm on 20 two-dimensional problems, as listed
in Table 1. Problems 1-10 are from Ali et al. (2005), 11-16 from Moré et al. (1981), and 17-19 from Price
et al. (2012). The offset Rastrigin function is given by

f20 = (z1 —2/3)* + (w2 — 1/3)* — cos(18z1 — 12) — cos(18z2 — 6)).
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The search regions are from Price et al. (2013), listed in column 3 of Table 1. With the exception of problem 3,
the search regions are square and so the lower and upper bounds of each dimension are listed.

Numerical results were generated with N = 20, No = 1, and T},,ax = 50000. A lower bound 7 = 1e-10 was
also placed on cell size. For a cell x to be Pareto optimal, it must satisfy Definition 1 and have m(z) > 7.
There was little difference between the stochastic and deterministic instances of the DVS algorithm. Hence,
only the deterministic results are presented. The DVS algorithm was compared with ARS and DIRECT. The
parameters of these algorithms were chosen as in Price et al. (2012).

Problem Q ARS DIRECT DVSI DVSII
1 Ackley [—30, 30] 2624 - 1468 5027
2 Becker-Lago [—10,10] 118 81 516 149
3 Branin [—5,10] x [0,15] 153 107 639 140
4  Camel Back - 3 [—5, 5] 120 - 254 115
5 Camel Back - 6 [—5, 5] 123 159 293 140
6  Cosine Mixture [-1,1] 192 - 510 92
7  Dekkers-Aarts [—20,20] 1068 291 3805 1219
8  Goldstein-Price [—2,2] 191 123 1249 166
9  mod. Rosenbrock [—5, 5] 3 fails 405 666 281
10 Schubert [—10, 10] 329 2285 524 322
11 Beale [0,5] 214 329 687 434
12 Brown almost linear  [—5, 25] 226 197 751 269
13 Chebyquad [-1,1] 44 25 40 48
14 Freudenstein-Roth [—15,15] 2067 5619 6137 590
15  Jennrich-Sampson [—10,10] 18833 527 4440 4162
16  Trigonometric [—0.5,1] 102 85 209 63
17 Weka l [0,1] 114 15387 37 30
18 Weka?2 0,1 1722 1691 879 341
19 Weka3 [0,1] 4 fails 1861 48 27
20 offset Rastrigin [—1,1] 2929 749 1031 3228

Table 1. Number of function evaluations required to satisfy f(zx) — f(z.«) <le-3 (problem 16 uses le-5 to
eliminate a known local minimum). ARS is stochastic so the results are averages over ten runs. Runs using
more than 50000 function evaluations were halted and listed as ‘fails’. If ARS failed on a problem, the number
of fails is reported. DIRECT always selects {2’s center point as its first point. Hence, comparisons with DIRECT
on problems with a global minimizer at €2’s center are meaningless. These problems are marked with ‘-’ in
DIRECT’s column. Figures marked in bold indicate the fastest method for each problem.

The final two columns in Table 1 list the results for the deterministic DVS algorithm using selection ap-
proach (I), DVS I, and using selection approach (II), DVS II. Both approaches solved all the problems con-
sidered and DVS II was faster on 17 of the problems. This suggests that evaluating the objective at every vertex
on the cell with the best function value is an effective strategy. This additional local search effort halved the
required number of function evaluations to solve most problems.

DVS II performed better than ARS on this set of problems. ARS failed to solve problems 9 and 19 on three
and four runs, respectively. On each fail ARS converged to a local, rather than global, minimum from which
it could not escape within 50000 function evaluations. For the 18 problems that ARS solved, it was notably
faster than DVS II on problems 1 and 11 and slightly faster on problems 2, 5, 7, 12, 13, and 20. However, DVS
11 is the superior method because it solved all the problems and was faster on 12 of them.

DIRECT and DVS II performed similarly on the 17 problems used for comparison — DVS II was faster on 8
problems and DIRECT was faster on 9. DIRECT required considerably more function evaluations than the other
methods to solve problem 17. Any point of the form . = (—1, x2), where 25 € [—1, 1], is a global minimizer
for this problem. It does not take long for the DVS algorithm to solve this problem because some of the cell
vertices will have ;1 = —1 (see Figure 2). DIRECT systematically divides up the search space as it approaches
the 1 = —1 boundary, requiring many function evaluations.
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A final problem from Price et al. (2012) is used to test the robustness of ARS, DIRECT, and DVS. The function
is given by

Fonkat = Min (2 + 1 cos(0) + 2 sin(6), 40||z — c||2) over [~1,1]%,

where 6 € [0,27] and ¢ € [—1, 1] are chosen randomly. Most of this function is determined by an inclined
plane, but the global minimizer is located at the base of the randomly positioned cone that cuts the plane.
Hence, most of this function provides no information about where the global minimum is located. Ten different
instances of this problem were generated and used to test the performance of ARS, DIRECT and DVS. DIRECT,
DVS I, and DVS II took an average of 12104, 7215, and 4912, respectively, to reduce fyexaq below le-3. On
average, DVS II is twice as fast as DIRECT on this difficult problem. ARS failed to solve this problem. Each
run converged to the local minimum determined by the inclined plane, which lies at a corner of (2.

6 CONCLUSION

A new algorithm for bound constrained global optimization is presented, called Directed Voronoi Search.
Initially the objective function is evaluated at a batch of points selected from the optimization region 2. These
points form a training data set which is used to construct a Voronoi partition on 2. The objective function is
then evaluated at certain vertices of the Voronoi partition. These vertices are chosen to potentially reduce the
objective function or to reduce the risk of missing the global minimum. These new points are then added to
the training data, the Voronoi partition is recalculated, and the method repeats. Convergence to an essential
global minimizer with probability one is demonstrated under mild conditions. A deterministic instance is also
shown to converge to an open set essential global minimizer. Numerical simulations show that the method is
effective at solving low dimensional global optimization problems.
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