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Abstract: We find driving strategies for two trains travelling on the same track in the same direction subject to
given journey times so that an adequate separation is maintained between the trains and so that the total energy
consumption is minimized. We assume the track is level.

Consider a single line rail track [0, X] with signals placed along the track at points 0 = x0 < · · · < xn = X .
It is a common safety requirement for trains travelling from x = 0 to x = X that no two trains are allowed on
the same segment (xj , xj+1) at the same time. We wish to find speed profiles v1 = v1(x) for a leading train
starting at time t1,0 = 0 and finishing at time t1,n = T1 and v2 = v2(x) for a following train starting at time
t2,0 ≥ 0 and finishing at time t2,n = t2,0 + T2 such that the safety constraints are observed and so that the
total energy consumption is minimized.

We solve the problem in two stages. For the first stage we consider a given set of times 0 = s0 < · · · < sn+1

where sn = T1 and sn+1 = s1 + T2. At this stage we wish to solve two problems—the leading train problem
and the following train problem. That is we want to find v1 = v1(x) so that the leading train leaves the point
x0 = 0 at time t1,0 = 0, passes through the points xj at time t1,j ≤ sj for each j = 1, . . . , n− 1 and reaches
point xn = X at time t1,n = T1 in such a way that energy consumption is minimized. We also want to find
v2 = v2(x) so that the following train leaves the point x0 = 0 at time t2,0 = s1, passes through the points xj
at time t2,j ≥ sj+1 for each j = 1, . . . , n − 1 and reaches point xn = X at time t2,n = s1 + T1 in such a
way that energy consumption is minimized. By finding all sets of feasible appointed times {sj}nj=0 it should
be possible to choose the set of appointed times that minimizes the total energy consumed. We will consider
systematic procedures for finding this best set of appointed times in another paper.

It is well known (Howlett 2000) that the optimal strategy for a train travelling on level track from (x, t) = (0, 0)
to (x, t) = (X,T ) is a power-hold-coast-brake strategy where the speed U at which braking begins is a
uniquely determined function of the hold speed V . As the hold speed increases the journey time decreases.
Thus there is a unique hold speed for each given journey time. For convenience we will call this an un-
constrained strategy of optimal type. What happens to the strategy of optimal type when intermediate time
constraints are imposed?

In the case of a leading train the intermediate constraints mean that the train must leave each section before
some given time. If a proposed journey does not leave a particular section (xj−1, xj) before the appointed time
sj then the corresponding constraint t1,j ≤ sj is violated and the proposed journey is infeasible. In such cases
the leading train must go faster on the first part of the journey(0, xj) in order to satisfy the active constraint
t1,j ≤ sj . Thus our intuitive idea will be that a strategy of optimal type for the leading train may use different
hold speeds for different sections and as the journey progresses the hold speed will decrease.

In the case of a following train the intermediate constraints mean that the train must enter each section after
some given time. If a proposed journey enters a particular section (xj−1, xj) before the appointed time sj then
the corresponding constraint t2,j−1 ≥ sj is violated and the proposed journey is infeasible. In such cases the
following train must go slower on the first part of the journey (0, xj−1) in order to satisfy the active constraint
t2,j−1 ≥ sj . Thus our intuitive idea will be that a strategy of optimal type for the following train may use
different hold speeds for different sections and as the journey progresses the hold speed will increase.

In this paper we find precise formulæ that allow us to construct these intuitively optimal strategies for the
leading and following trains. Note that our imposed constraints ensure that the following train will not enter
any particular section until the leading train has left that section.
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1 THE OPTIMAL DRIVING STRATEGY ON LEVEL TRACK

The equations of motion for a train on a level track [0, X] are

vv ′ = p/v − q − r(v) (1.1)

where x ∈ [0, X] is the position, v = v(x) is the speed, p = p(x) ∈ [0, P ] is the controlled driving power per
unit mass, q = q(x) ∈ [0, Q] is the controlled braking force per unit mass and r(v) is the resistance force per
unit mass. The elapsed journey time t = t(x) satisfies the differential equations

t ′ = 1/v (1.2)

where v = v(x) is the solution to (1.1). The energy consumption cost is

J =

∫ X

0

(p/v) dx (1.3)

which is the energy required to drive the train. We have the optimal train control problem on level track.

Problem 1. Let T > 0 be the maximum allowed journey time. Find controls (p, q) = (p(x), q(x)) and an
associated speed profile v = v(x) satisfying the equation of motion (1.1) with v(0) = 0 and v(X) = 0 and
the elapsed time equation (1.2) and elapsed time constraint t(X) ≤ T so that the cost (1.3) is minimized.

If T is sufficiently large then it has been shown (Howlett 2000, Khmelnitsky 2000, Liu and Golovitcher
2003, Albrecht et al. 2013) that the optimal strategy exists and is unique. The solution takes a characteristic
form that we call a strategy of optimal type. It is convenient to define auxilliary functions ϕ(v) = vr(v)
and ψ(v) = v2r ′(v). Each strategy of optimal type is defined by a designated hold speed V > 0 and a
corresponding speed U = ψ(V )/ϕ ′(V ) = V − ϕ(V )/ϕ ′(V ) < V at which braking begins. There is an
associated critical time

TV =

∫ V

0

dv

P/v − r(v)
+

∫ V

U

dv

r(v)
+

∫ U

0

dv

Q+ r(v)
. (1.4)

If T > TV then the optimal strategy on level track is a strategy of optimal type (Howlett and Pudney 1995,
Howlett 2000) with a phase of maximum power driven by controls (p, q) = (P, 0), a phase of hold at speed
V driven by controls (p, q) = (ϕ(V ), 0), a phase of coast with controls (p, q) = (0, 0) which terminates
when v(x) = U and a phase of maximum brake using controls (p, q) = (0, Q). The formula (1.4) defines the
collective time taken for the power, coast and brake segments. The corresponding critical distanceXV is given
by

XV =

∫ V

0

vdv

P/v − r(v)
+

∫ V

U

vdv

r(v)
+

∫ U

0

vdv

Q+ r(v)
. (1.5)

Note that both TV and XV increase as V increases. The length of the hold phase is chosen to be X −XV so
that the total distance travelled is X and the hold speed V is chosen so that the total elapsed time is T . The
time spent in the hold phase is T − TV = (X −XV )/V .

2 THE EQUATIONS OF MOTION FOR THE TWO TRAIN SEPARATION PROBLEM

The equations of motion for two trains i = 1, 2 using different strategies and travelling at different times on
the same level track [0, X] are

viv
′
i = pi/vi − qi − ri(vi) (2.6)

where x ∈ [0, X] is the position, vi = vi(x) is the speed, pi = pi(x) ∈ [0, Pi] is the controlled power per unit
mass, qi = qi(x) ∈ [0, Qi] is the controlled braking force per unit mass, ri(vi) is the resistance force per unit
mass. The elapsed times ti = ti(x) satisfy the differential equations

t ′i = 1/vi (2.7)

for each i = 1, 2 where vi = vi(x) is the solution to (2.6). The energy consumption costs are

Ji =

∫ X

0

(pi/vi) dx (2.8)

for each i = 1, 2 which is the energy required to drive the trains. Once again it is convenient to define the
auxilliary functions ϕi(vi) = viri(vi) and ψi(vi) = v2i r

′
i (vi) for each i = 1, 2.
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3 THE LEADING TRAIN PROBLEM

For given times 0 = s0 < · · · < sn = T1 we wish to find a strategy of optimal type with speed profile v1 =
v1(x) for a leading train travelling from x0 = 0 to xn = X with v1,0 = v1(x0) = 0 and v1,n = v1(xn) = 0
and satisfying the elapsed time constraints t1,0 = s0, t1,n = sn and t1,j ≤ sj for each j = 1, . . . , n− 1. The
leading train satisfies the equations (2.6) and (2.7). If t1,j = t1(xj) then

t1,j − t1,0 =

∫ xj

0

(1/v1) dx (3.9)

for each j = 1, . . . , n. The elapsed time constraints are

t1,j − t1,0 ≤ sj − s0 (j = 1, . . . , n− 1) and t1,n − t1,0 = sn − s0. (3.10)

Problem 2. Find controls (p1, q1) = (p1(x), q1(x)) and an associated speed profile v1 = v1(x) satisfying the
equation of motion (2.6) with v1(0) = 0 and v1(X) = 0 and the elapsed time equation (2.7) and elapsed time
constraints (3.10) so that the cost (2.8) is minimized.

Algorithm LT, below, will find a feasible strategy for the leading train if such a strategy exists.

Algorithm LT is used to construct a journey starting from position xk at time t1,k = sk and speed Wk:
Calculate a speed profile v1 = v1(x) on [xk, xn] satisfying both equation (2.6) with v1,k = v1(xk) = Wk

and v1,n = 0 and equation (2.7) and the time constraint t1,n − t1,k = sn − sk in such a way that J1,k =∫ xn

xk
(p1/v1) dx is minimized.

if t1,j > sj for some j ∈ {k + 1, . . . , n− 1} then
Find the largest ` ∈ {k + 1, . . . , n− 1} for which the optimal speed profile v̂1 on [xk, xn] satisfying the
additional time constraint t̂1,` − t1,k = s` − sk has no timing point j ∈ {k + 1, . . . , ` − 1} for which
t̂1,j − t1,k > sj − sk.
Use Algorithm LT to calculate a journey starting from position x` at time t1,` and speed W` = v̂1(x`).

end if

Algorithm LT is illustrated with a specific example in Fig. 1 where the speed profiles are represented as straight
lines with slope equal to the average speed. The profiles should not be interpreted literally. Optimal profiles
are uniquely determined by the hold speed but in general will not be straight lines. In this example LT finds
successive optimal speed profiles {AG} on [x0, x3]; {AF,FB} on [x0, x3] through time-window CF at x2;
and {AE,EG} on [x0, x3] through BE at x1 but finds violated time constraints on each occasion. LT then
accepts profile {AE} on [x0, x1] and seeks a profile {EG} on [x1, x3] (in an overall profile {{AE}, {EG}}
through BE at x1) but finds a violated constraint at x2; and so (finally) finds profile {EF,FG} on [x1, x3]
though CF at x2 (in an overall profile {{AE}, {EF,FG}}. This example suggests that the optimal strategy
for a leading train will use a decreasing sequence of hold speeds on successive intervals.
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Figure 1: Algorithm LT (left) and Algorithm FT (right).

If Algorithm LT finds a feasible strategy then we can show that an optimal strategy exists. Define arbitrarily
chosen non-negative numbers {εj}n−1j=1 such that sj−1 < sj − εj for each j = 1, , . . . , n− 1 and non-negative
speeds {Wj}n−1j=1 such that Wj ≤ W for all j = 1, 2, . . . , n − 1 where W is the maximum allowed speed.
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Assume the optimal journeys on [xj , xj+1] are feasible subject to v1,0 = 0 and v1,n = 0, t1,0 = s0 and
t1,n = sn, v1,j = Wj and t1,j = sj − εj for each j = 1, . . . , n − 1. Then there is a unique optimal strategy
with controls (p1, q1) such that all constraints are satisfied. This strategy is simply the sequential compilation
of the optimal strategies on each subinterval [xj , xj+1] subject to the specified constraints.

Note that the cost of the journey J1 = J1(ε,W ) depends on ε = (ε1, . . . , εn−1) and W = (W1, . . . ,Wn−1)
for all feasible arguments (ε,W ). Let

F1 ⊂×n−1
j=1 [0, sj − sj−1]× [0,W ]n−1 ⊂ R2n−2 (3.11)

be the set of all feasible arguments. Assume that F1 6= φ. The continuous dependence of v1 = v1(x) and
t1 = t1(x) on the boundary conditions defined by (ε,W ) means that F1 is closed and hence compact. Since
J1 = J1(ε,W ) is also continuous there is a uniquely defined minimum value J?

1 for J1 and there is some
point (ε?,W ?) with J?

1 = J1(ε
?,W ?) although this argument does not guarantee uniqueness.

4 THE LEADING TRAIN PROBLEM ON LEVEL TRACK

If we make an intuitive assumption about the nature of the optimal strategy—as a succession of optimal strate-
gies in the form power-hold-coast on (x0, x1) followed by coast-hold-coast on each segment (xj , xj+1) with
a decreasing sequence of hold speeds {Vj} for j = 1, . . . , n− 2 and coast-hold-coast-brake on (xn−1, xn)—
then we can formulate the leading train problem on level track in the following way.

Problem 3. We wish to find an optimal driving strategy for a leading train to travel from (v, t, x) = (0, 0, 0)
to (v, t, x) = (0, T,X) on level track subject to the additional time constraints that the train must pass the
intermediate points {xj}n−1j=1 prior to the given corresponding intermediate times {sj}n−1j=1 . Suppose that all
intermediate constraints are active. That is for 0 ≤ k < ` ≤ n − 1 suppose that the optimal journey from
x = xk to x = x`+1 subject to the single time constraint t1,`+1 − t1,k ≤ s`+1 − sk is not feasible if the
intermediate constraints t1,j ≤ sj for j = k + 1, . . . , ` are imposed. Our intuitive analysis suggests that we
should expect different hold speeds Vj on each interval (xj , xj+1) with Vj > Vj+1 for each j = 0, . . . , n− 1.
We propose a strategy with (1) a power phase terminating at speed V0 followed by a hold phase at speed V0
until x = α0 ∈ (x0, x1) and a coast phase to speed U1 at x = x1 on (x0, x1), (2) a coast phase from speed
Uj at x = xj to speed Vj followed by a hold phase at speed Vj until x = αj ∈ (xj , xj+1) and a coast phase
to speed Uj+1 at x = xj+1 on (xj , xj+1) for each j = 1, . . . , n−2 and (3) a coast phase from speed Un−1 at
x = xn−1 to speed Vn−1, a hold phase at speed Vn−1 terminating at x = αn−1 ∈ (xn−1, xn), a coast phase
to speed Un and a brake phase to speed 0 on (xn−1, xn). The cost of the strategy is J = J(V ,α,U) where

J =

∫ V0

0

Pdv

P/v − r(v)
+ r(V0)

[
α0 −

∫ V0

0

vdv

P/v − r(v)

]

+
n−1∑
j=1

r(Vj)

[
αj − xj −

∫ Uj

Vj

vdv

r(v)

]
. (4.12)

The distance travelled between the constraints is given by

δj = αj − xj +
∫ Vj

Uj+1

vdv

r(v)
(4.13)

for each j = 0, . . . , n− 2 and

δn−1 = αn−1 − xn−1 +
∫ Vn−1

Un

vdv

r(v)
+

∫ Un

0

vdv

Q+ r(v)
. (4.14)

The corresponding elapsed times are

τ0 =

∫ V0

0

dv

P/v − r(v)
+

1

V0

[
α0 −

∫ V0

0

vdv

P/v − r(v)

]
+

∫ V0

U1

dv

r(v)
, (4.15)

τj =

∫ Uj

Uj+1

dv

r(v)
+

1

Vj

[
αj − xj −

∫ Uj

Vj

vdv

r(v)

]
(4.16)
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for each j = 1, . . . , n− 2 and

τn−1 =

∫ Un−1

Un

dv

r(v)
+

1

Vn−1

[
αn−1 − xn−1 −

∫ Un−1

Vn−1

vdv

r(v)

]
+

∫ Un

0

dv

Q+ r(v)
. (4.17)

We wish to minimize J subject to the constraints δj ≥ xj+1−xj and τj ≤ sj+1−sj for each j = 0, . . . , n−1.

Define a Lagrangian function J = J +
∑n−1

j=0 [λj(xj+1 − xj − δj) + µj(τj − sj+1 + sj)] and calculate

∂J
∂Vj

= 0 ⇒

(
r ′(Vj)−

µj

V 2
j

)[
αj − xj −

∫ Uj

Vj

vdv

r(v)

]
+
ϕ(Vj)− (λjVj − µj)

r(Vj)
= 0 (4.18)

and

∂J
∂αj

= 0 ⇒ ϕ(Vj)− (λjVj − µj)

Vj
= 0 (4.19)

for each j = 0, . . . , n− 1. We also have

∂J
∂Uj

= 0 ⇒ (λj−1 − r(Vj)− µj/Vj)Uj − (µj−1 − µj)

r(Uj)
= 0 (4.20)

for each j = 1, . . . , n− 1. Finally we have

∂J
∂Un

= 0 ⇒ Q(λn−1Un − µn−1)

r(Un) [Q+ r(Un)]
= 0. (4.21)

From (4.18) and (4.19) it follows that y = λjv − µj is tangent to the curve y = ϕ(v) at v = Vj and that
λj = ϕ ′(Vj) and µj = ψ(Vj) for each j = 0, . . . , n− 1. It follows from (4.20) and (4.21) that

Uj =
ψ(Vj−1)− ψ(Vj)
ϕ ′(Vj−1)− ϕ ′(Vj)

(j = 1, . . . , n− 1) and Un =
ψ(Vn−1)

ϕ ′(Vn−1)
. (4.22)

It is easy to show that the convexity of ϕ(v) means that Vj ≤ Uj ≤ Vj−1 and Un ≤ Vn−1.

Example 1 (Leading train problem). Let P = 3 m2s−3, Q = 0.3 ms−2, r(v) = 6.75 × 10−3 + 5 × 10−5v2

ms−2, x = (0, 20, 84, 132, 144) × 103 m, s = (0, 12, 36, 60, 72) × 102 s. We used MATLAB to calculate
V = (23.5634, 23.5634, 20.1442, 10.9013) ms−1, U = (23.5634, 21.8984, 15.9814, 5.2714) ms−1, t =
(0, 8.82, 36.00, 60.00, 72.00)× 102 s. Note t ≤ s as required.

U1

U2

U3

U4

x0 x1 x2 x3 x4

Figure 2: Example 1—optimal strategy power, hold, coast, hold, coast, hold, coast, brake for leading train.

5 THE FOLLOWING TRAIN PROBLEM

The analysis follows a similar pattern to the analysis for the leading train problem with some minor differences.
For the given times 0 < s1 · · · < sn+1 = T2 + s1 we wish to find a strategy of optimal type with speed
profile v2 = v2(x) for a following train travelling from x0 = 0 to xn = X with v2,0 = v2(x0) = 0 and

251



Albrecht, Howlett, Pudney, Vu, Zhou; Two train separation on level track

v2,n = v2(xn) = 0 and satisfying the elapsed time constraints t2,0 = s1, t2,n = sn+1 and t2,j ≥ sj+1 for
each j = 1, . . . , n− 1. The following train satisfies the equations (2.6) and (2.7). If t2,j = t2(xj) then

t2,j − t2,0 =

∫ xj

0

(1/v2) dx (5.23)

for each j = 0, . . . , n. The elapsed time constraints are

t2,j − t2,0 ≥ sj+1 − s1 (j = 1, . . . , n− 1) and t2,n − t2,0 = sn+1 − s1. (5.24)

Problem 4. Find controls (p2, q2) = (p2(x), q2(x)) and an associated speed profile v2 = v2(x) satisfying the
equation of motion (2.6) with v2(0) = 0 and v2(X) = 0 and the elapsed time equation (2.7) and elapsed time
constraints (5.24) in such a way that the cost (2.8) is minimized.

Algorithm FT is similar to Algorithm LT and will find a feasible strategy for the following train if such
a strategy exists. Algorithm FT is illustrated with a specific example in Fig. 1. In this example FT finds
successive optimal speed profiles {AG} on [x0, x3]; {AC,CG} on [x0, x3] through time-window CF at x2;
and {AB,BG} on [x0, x3] through BE at x1 but finds violated time constraints on each occasion. FT then
accepts profile {AB} on [x0, x1] and seeks a profile {BG} on [x1, x3] but finds a violated constraint at x2;
and so (finally) finds profile {BC,CG} on [x1, x3] through CF at x2. This example leads us to expect that
the following train will use an increasing sequence of hold speeds on successive intervals.

6 THE FOLLOWING TRAIN PROBLEM ON LEVEL TRACK

If we make an intuitive assumption about the nature of the optimal strategy—as a succession of optimal
strategies in the form power-hold-power on each segment (xj , xj+1) with an increasing sequence of hold
speeds {Vj} for j = 0, . . . , n− 2 and power-hold-coast-brake on (xn−1, xn)—we can formulate the leading
train problem on level track in the following way.

Problem 5. We wish to find an optimal driving strategy for a following train to travel from (v, t, x) = (0, s1, 0)
to (v, t, x) = (0, T + s1, X) on level track subject to the additional time constraints that the train must pass
the intermediate points {xj}n−1j=1 after some given corresponding intermediate times {sj+1}n−1j=1 . Suppose that
all intermediate constraints are active. That is for 0 ≤ k < ` ≤ n− 1 suppose that the optimal journey from
x = xk to x = x`+1 subject to the single time constraint t2,`+1 − t2,k ≤ s`+2 − sk+1 is not feasible if the
intermediate constraints t2,j ≥ sj+1 for j = k+1, . . . , ` are imposed. Our intuitive analysis suggests that we
should expect different hold speeds Vj on each interval (xj , xj+1) with Vj < Vj+1 for each j = 0, . . . , n− 2.
We propose a strategy with (1) a power phase terminating at speed V0 followed by a hold phase at speed V0
until x = α0 and a power phase to speed U1 at x = x1 on (x0, x1), (2) a power phase from speed Uj at
x = xj to speed Vj followed by a hold phase at speed Vj until x = αj and a power phase to speed Uj+1 at
x = xj+1 on (xj , xj+1) for each j = 1, . . . , n − 2 and (3) a power phase from speed Un−1 at x = xn−1
to speed Vn−1, a hold phase at speed Vn−1 terminating at x = αn−1, a coast phase to speed Un and a final
brake phase to speed 0 on (xn−1, xn). The cost of the strategy is given by J = J(V ,α,U) where

J =

∫ Vn−1

0

Pvdv

P − ϕ(v)
+ r(V0)

[
α0 −

∫ V0

0

v2dv

P − ϕ(v)

]

+

n−1∑
j=1

r(Vj)

[
αj − xj −

∫ Vj

Uj

v2dv

P − ϕ(v)

]
. (6.25)

The distance travelled between the constraints is given by

δj = αj − xj +
∫ Uj+1

Vj

v2dv

P − ϕ(v)
(6.26)

for each j = 0, . . . , n− 2 and

δn−1 = αn−1 − xn−1 +
∫ Vn−1

Un

vdv

r(v)
+

∫ Un

0

vdv

Q+ r(v)
. (6.27)
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The corresponding elapsed times are

τ0 =

∫ U1

0

vdv

P − ϕ(v)
+

1

V0

[
α0 −

∫ V0

0

v2dv

P − ϕ(v)

]
, (6.28)

τj =

∫ Uj+1

Uj

vdv

P − ϕ(v)
+

1

Vj

[
αj − xj −

∫ Vj

Uj

v2dv

P − ϕ(v)

]
(6.29)

for each j = 1, . . . , n− 2 and

τn−1 =

∫ Vn−1

Un−1

vdv

P − ϕ(v)
+

1

Vn−1

[
αn−1 − xn−1 −

∫ Vn−1

Un−1

vdv

P − ϕ(v)

]

+

∫ Vn−1

Un

dv

r(v)
+

∫ Un

0

dv

Q+ r(v)
. (6.30)

We wish to minimize J subject to the constraints δj ≥ xj+1−xj , τj ≥ sj+2−sj+1 for each j = 0, . . . , n−2,
δn−1 ≥ xn − xn−1 and τ0 + · · ·+ τn−1 ≤ T .

Define a Lagrangian function

J = J +
n−2∑
j=0

[λj(xj+1 − xj − δj) + µj(sj+2 − sj+1 − τj)]

+λn−1(xn − xn−1 − δn−1) + µn−1(τ0 + · · ·+ τn−1 − T )

and solve the equations ∂J /∂Vj = 0 and ∂J /∂αj = 0 for each j = 0, . . . , n − 1 and the equations
∂J /∂Uj = 0 for each j = 1, . . . , n − 1. Similar formulae to those obtained in the leading train problem
now show that y = λjv − (µn − µj) is tangent to the curve y = ϕ(v) at v = Vj and that λj = ϕ ′(Vj) and
µn − µj = ψ(Vj) for each j = 0, . . . , n− 2 and that

Uj =
ψ(Vj)− ψ(Vj−1)
ϕ ′(Vj)− ϕ ′(Vj−1)

(j = 1, . . . , n− 1) and Un =
ψ(Vn−1)

ϕ ′(Vn−1)
. (6.31)

It is easy to show that the convexity of ϕ(v) means that Vj−1 ≤ Uj ≤ Vj and Un ≤ Vn−1.

Example 2 (Following train problem). Let P = 3 m2s−3, Q = 0.3 ms−2, r(v) = 6.75× 10−3 +5× 10−5v2

ms−2, x = (0, 20, 84, 132, 144) × 103 m, s = (0, 12, 36, 60, 72) × 102 s. We used MATLAB to calculate
V = (8.2085, 26.4822, 26.4822, 26.4822) ms−1, U = (18.9496, 26.4822, 26.4822, 16.5902) ms−1, t =
(12.00, 36.00, 60.27, 78.39, 84.00)× 102 s. Note t ≥ s+ s1 × 1 as required.

7 CONCLUSIONS AND FUTURE WORK

For a given set of intermediate time constraints we found driving strategies for both the leading and following
trains on level track which minimize fuel consumption for each train and ensure that the leading train leaves
each particular section by the appointed time and the following train enters after the appointed time. There are
two major research tasks remaining. What is the best way to find the optimal set of intermediate times that
minimize total fuel consumption? What are the optimal strategies on tracks that contain steep sections?
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