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Abstract: Infrastructure planning requires an extensive knowledge of potential pedestrian behavior, in partic-
ular at high crowd densities. The modelling and simulation of pedestrian movements is an important tool in the
planning and operation of airports, railway stations, sports stadiums, shopping malls, and other public places.
For example, in shopping malls, optimal models are needed to guide pedestrians on predefined itineraries.
Evacuation scenarios, where all individuals move toward the same escape point, can be interpreted as single
destination problems. These have been studied quite intensively. Multidestination problems, where distinct
streams of pedestrians move from one or more starting points to multiple destinations, need more investigation.
In particular, the crossing of pedestrian streams has not yet been thoroughly investigated.

In the last decade, various authors have modelled pedestrian flows by a macroscopic approach. Pedestrians in
dense crowds behave much like gas particles. Consequentially, pedestrian flows are often modelled by partial
differential equations that are similar to those used in models for gas or fluid dynamics.

A more realistic modelling of crossing situations can be obtained by an adequate description of pedestrian
behaviour in the presence of crowded situations.

An adequate description of pedestrian behaviour in crowded situations leads to a more realistic model. We
assume that pedestrians try to evade crowded spaces. This effect can be modelled as a function of local
density. Thus, our model is based on the assumption that pedestrians avoid densely populated areas by moving
in the direction of the negative gradient of the total local density % = %1 + · · · + %n, where %i, i = 1, . . . , n
is the density of a particular pedestrian group. This local orientation can be interpreted as the behaviour of
blind persons with canes, who generally stick to their planned direction, but modify it by moving away from
congestion, i.e. they detect the gradient. The assumption of sighted people would lead to a nonlocal model,
which is beyond the scope of this contribution.

Our model developed has the general form

∂%i
∂t

+∇ · f i(%1, . . . , %n;x, y) =

n∑
j=1

∇ · (bij(%1, . . . , %n)∇%j), i = 1, . . . , n, (1)

where f i and bij ≡ bij(%1, . . . , %n) with 1 ≤ i, j ≤ n denote the flux vector and the components of a diffu-
sion matrix B, respectively. Different populations moving in different directions are represented by different
phases. In the framework of modelling by balance laws with mass, momentum, and energy equations, Equa-
tion (1) corresponds to the set of mass equations. The constitutive functions make the momentum equations
unnecessary. In this system of convection-diffusion equations, the convective term corresponds to a movement
towards a strategic direction and the diffusion corresponds to a tactical movement that avoids jams. The con-
vective and diffusion terms are deduced from a general mass balance. Thereby, we derive a nonlinear diffusion
matrix that is superior to the linear diffusion matrix

B(%1, %2) =

(
ε δ
δ ε

)
. (2)

Keywords: Passenger simulation, Infrastructure planning, Multiphase continuum model, Convection-diffusion 
equation, Finite volume scheme

22nd National Conference of the Australian Society for Operations Research, Adelaide, Australia, 1–6 December 2013 
www.asor.org.au/conferences/asor2013

254



S. Berres et al., Simulation model of crossing pedestrian movements for infrastructure planning

1 INTRODUCTION

The two basic models for pedestrian behaviour are the microscopic and the macroscopic (Daamen et al.,
2002). In the former, pedestrians are considered as individual objects interacting with each other; in the
latter, their behaviour is analysed in terms of more global properties of a continuous stream. Macroscopic
models interpret pedestrians as particles (with averaged flow intensity and speed) and focus on the balancing
relationships of particle density. A third class, mesoscopic models, combine the main properties of the other
two. For a detailed, comprehensive overview of both vehicular and pedestrian traffic and the main modelling
and simulation approaches (in particular for macroscopic models), we refer to Helbing et al. (2001).

In the last decade, various authors Berres et al. (2012); Bruno et al. (2011); Hoogendoorn and Daamen (2005);
Jiang et al. (2010); Nakayama et al. (2007); Xia et al. (2008) have modelled pedestrian flows by a macroscopic
approach. Pedestrians in dense crowds behave much like gas particles, so models from gas or fluid dynamics
are appropriate. Thus, most of the research on macroscopic models is focussed on the discussion and de-
velopment of general partial differential equations, one- or two-dimensional in space, and based on physical
principles such as mass, momentum, and energy balances. This contribution is a further development of our
convection-diffusion model(Berres et al., 2011, 2012) with only linear diffusion. For n = 2, Berres et al.
(2012) considered an equation of the form (1) with a diffusion matrix with constant coefficients. In Section 2,
we develop a nonlinear diffusion matrix that models crowd-avoiding behavior. In Section 3, we simulate the
equations for pedestrian streams moving in opposite directions.

2 MODELLING

The basic approach of our modelling assumes pedestrian flow to be a transport problem which is principally
governed by a mass balance equation. Assume n ∈ N distinct pedestrian species. Let Ω be an open sufficiently
smooth bounded domain inR2 and (0, T ) an open interval. For (x, y) ∈ Ω, t ∈ (0, T ) the mass equation

∂%i
∂t

+∇ · (%i vi) = 0, i = 1, . . . , n, (3)

describes the mass flow where t denotes time and %i ∈ [0, 1] the local densities of the i-th pedestrian species.
The equations are coupled by the corresponding vi = vi(%1, . . . , %n), 1 ≤ i ≤ n, since each speed depends
on all pedestrian densities.

When modelling the given transport problem, our solution has to reflect two aspects of pedestrian behaviour
that correspond to strategic and tactical decision-making, respectively. On the one hand, a pedestrian has a
target, which he tries to reach, and on the other hand he might to be forced to deal with local problems like
high densities. To take account of these two aspects, we restart from the mass equation (3) and decompose the
velocity as

vi(%1, . . . , %n) = vs
i(%1, . . . , %n) + vt

i(%1, . . . , %n), i = 1, . . . , n, (4)

consisting of the following two components:

• a strategic component vs
i , which reflects the disposition to follow the strategic goal of reaching a certain

destination on a desired path

• a tactical component vt
i , which locally avoids densely populated areas

These two components are not necessarily orthogonal, since the strategic component is prescribed “a priori”,
whereas the tactical component adapts to the local arrangement of the pedestrians. Both velocity components
are modelled as a product of velocity and direction,

vsi = aiV ds
i , vti = bi%iWdt

i, i = 1, . . . , n, (5)

where ds
i and dt

i denote the direction field giving a desired strategic and an adapted tactical walking direction,
respectively. The functions V = V (%) and W = W (%) are velocity modules (scaling factors) in [0, 1], where
% =

∑n
i=1 %i is the pedestrian concentration in a representative elementary volume. The constants ai and bi

are maximal direction velocities (maximum speeds).

Standard strategic directions are (for example) opposite or perpendicular. For a two-species model (where
n = 2) the most simple examples for the strategic directions are given by ds

1 = (1, 0)T, ds
2 = (−1, 0)T
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for a flow in opposite directions, or ds
1 = (1, 0)T, ds

2 = (0, 1)T for a flow in perpendicular directions.
More sophisticated strategic directions are aligned to a potential field P with ds

1 = P x, ds
2 = P y . In this

contribution, the strategic direction fields are designed such that the pedestrians try to reach their respective
exit on the shortest path. This leads to the side effect that the corners of the exits are especially congested.
Figure 1 illustrates the direction fields ds

i(x), i = 1, 2 of the two streams.
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Figure 1. Direction fields of stream 1 (left) and stream 2 (right).

With these specifications equation (3) can be written as

∂%i
∂t

+∇ ·

{
%i

[
aiV ds

i + biWdt
i

]}
= 0. (6)

The tactical direction is modelled using a partial normalization

dt
i =

{
−∇%/|∇%| for |∇%| > 1,

−∇% for |∇%| ≤ 1,
(7)

by which unrealistic “escape” velocities can be avoided in the model. Defining

χ(%) =

{
1/|∇%| if |∇%| > 1,

1 if |∇%| ≤ 1,
(8)

we can interpret (6) as an example of model type (1) with

bij(%1, . . . , %n) = bi %iW χ(%), i, j = 1, . . . , n, (9)

which describes a diffusive flux opposite to the gradient of the total density and proportional to %i. The variable
V weights the strategic part of the pedestrian movement, and W the tactical. A generic assumption for V is
that it is decreasing. This describes a throttling effect at higher concentrations: the more persons are in a given
region, the more they get stuck on their way. The tactical velocity W is assumed to increase, which reflects
the model assumption that the tendency to evade increases at higher concentrations.

The more persons are blocking the way, the stronger is the tendency to move along an alternate trajectory.
Combining the qualitative behaviour of V and W , and modelling the concept that partitioning the flux into
strategically and tactically caused parts results in a partitioning of total velocity (normalized to 1), one can
impose the constraint

V +W = 1. (10)
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A pedestrian has an individual level of moving activity which he partitions between the two alternatives of
moving to the desired target or evading jams.

In this contribution, we choose V = 1 − % and opt for assumption (10), which yields W = %. Hence (9)
becomes

bij(%1, . . . , %n) = bi %i %χ(%), i, j = 1, . . . , n. (11)

This leads to a diffusion matrix of the form

B̂(%) = %

b1%1 . . . b1%1
...

...
bn%n . . . bn%n

χ(%). (12)

The convection-diffusion system (1) can be written in vector form as

∂%

∂t
+∇ · f(%) = ∇ ·

(
B̂(%)∇%

)
, (13)

where % = (%1, . . . , %n) contains all concentration components.

3 NUMERICAL EXAMPLES

The first model variant uses the linear diffusion matrix B, as specified in (2); the second uses the nonlinear
matrix B̂ as specified in (12). We refer to the first as the “divergence” or ∆-simulation model, and the second
as the “gradient” or ∇-simulation model. . The following examples illustrate the difference between the two
models.

The crowd dynamics are considered to take place in the domain Ω = [−1, 1]2. The initial condition consists
of an empty domain, i.e. %i(0, x, y) = 0 for all (x, y) ∈ Ω, i = 1, 2. The subboundaries

Γw =
{

(x, y) : x = −1, y ∈ [−0.3, 0.3]
}
, Γe =

{
(x, y) : x = 1, y ∈ [−0.3, 0.3]

}
,

represent combined entries and exits, while Γc = ∂Ω \ (Γw ∪Γe) denotes the walls. Streams 1 and 2 enter the
domain by the doors Γw and Γe, respectively, and leave it by exits Γe and Γw, respectively.

We consider a two-dimensional situation of two pedestrian streams (where n = 2) meeting each other at an
angle of 180◦, i.e. the streams move in opposite directions. Since the model is symmetric, the evolution of
only one species (%1) is shown in the figures. The other species (%2) moves in the same way, but in the opposite
direction.

The specification of the convective fluxes is completed by setting a1 = a2 = 1, V = 1 − %. The diffusion
term is W ≡ 1 in the linear model and W = 1− V = % in the nonlinear. With these specifications, the model
variants become

∂%i
∂t

+∇ ·
(
%i(1− %)ds

i

)
= ε∆%i, i = 1, 2,

∂%i
∂t

+∇ ·
(
%i(1− %)ds

i

)
= ∇ ·

(
%i %χ(%)∇%

)
, i = 1, 2,

for the linear “∆-model” and for the nonlinear “∇-model”, respectively.

In order to illustrate the different qualitative behaviour of the two approaches, we use “normalized” parameters
ε = 0.01, δ = 0 in the linear diffusion matrix (2). This choice is motivated by the experimental observation that
a larger ε reflects a larger diffusion that is spreading pedestrians rather quickly over the available space. This
effect works against the assumption of pedestrian streams oriented towards a specific target. The coefficients
of the non-linear diffusion matrix (12) are set to b1 = b2 = 1.

In Figure 2, the densitiy distribution for phase 1, simulated for the ∆-model, are shown at times 30, 40 and
480 (steady state). For better visualisation, the velocity field is magnified by the factors 0.55, 0.5 and 2 for
the respective time steps. In Figure 3, the densitiy distribution of %1 and the corresponding velocity field of
phase 1, simulated for the ∇-model, are shown at times 50, 75, and 100. The velocity field is magnified by
the factors 0.5, 0.65, and 12 for the respective time steps. For both models, the accumulation of the streams
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Figure 2. Density of %1 (left) and corresponding velocity field (right) for the ∆-model at times 30, 40 and 480
(steady state). The pedestrians diffuse back towards their entrance, blocking the opposing flow of pedestrians.
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Figure 3. Density %1 (left) and corresponding velocity field (right) for the ∇-model at times 50, 75, 100. The
pedestrians move to either side of their exit, allowing the opposing flow of pedestrians to move past.
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starts at the side opposite to the entrance. This accumulation is built around the exit-door corners, leaving
only a small entrance channel for the other species. In the ∇-model, this accumulation is concentrated at
the sides of the exit door, leaving a broad entrance channel for the other species, whereas in the ∆-model,
this accumulation is instead concentrated in the vertical center. Therefore, the accumulation covers the direct
connection between the entrances and exists, leaving a only little space for the other species. This finally leads
to a locking situation, in which the populations mutually block each other.

4 CONCLUSIONS

The ∆-model describes congestion situations by introducing diffusion in order to create evasion movements.
The result, however, is a filling of empty spaces and does not align to our goal of a development of a simulation
model capable to describe the crossing of pedestrian streams, where distinct particle streams try to reach their
particular target without merging with the other streams. This goal prefers a mechanism for a better separation
of the phases in particular at crossings. Such a separation is generated by an avoidance behaviour.

The linearity of the ∆-model does not provide a separation mechanism. The∇-model assumes that pedestrians
trying to reach a specific target are flexible enough to change direction in case of congestion or traffic jam. The
movement towards the target is temporarily restricted by withdrawing from regions with higher densities, i.e.,
in the direction opposite to the gradient of total density. This model respects phase separation and circumvents
congestion.
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