
Optimising Reclaimer Schedules
M. Savelsbergh a, R. Kapoor a

a School of Mathematical and Physical Sciences, University of Newcastle, Australia
Email: reena.kapoor@uon.edu.au

Abstract: The Hunter Valley Coal Chain (HVCC), with 40 coal mines, 30 load points, 3 coal loading terminals
(9 ship berths and 7 loaders), and loading about 1,500 ships annually, is one of the largest coal export operations
in the world. All planning and scheduling of coal exports in the Hunter Valley is managed by the Hunter
Valley Coal Chain Coordinator Limited (HVCCC) with a main goal of maximizing the throughput. Effective
management of the stockyards at the coal terminals is critical to achieving this goal. Coal arrives at a coal
terminal by train. The coal is dumped and stacked to form stockpiles. Coal brands are a blended product, with
coal from different mines having different characteristics “mixed” in a stockpile to meet the specifications
of the customer. Once the ship for which the coal is destined arrives at a berth at the terminal, the coal is
reclaimed and loaded onto the ship. The ship then transports the coal to its destination. The efficiency of a
stockyard depends heavily on the reclaimers’ productivity. Thus, effective scheduling of the reclaimers is of
crucial importance.

To better understand the fundamental difficulties of reclaimer scheduling, we are investigating a number of
variants of an abstract reclaimer scheduling problem. In this paper, we consider a variant in which two re-
claimers serve two parallel identical stock pads, i.e., the reclaimers move back and forth along the length of
the pads and reclaim stockpiles from both pads. However, since the two reclaimers move on the same rails
they cannot pass each other. The goal is to reclaim a set of stockpiles with given positions on the pads as
quickly as possible.

More specifically, one reclaimer starts at one end of the stock pads and the other reclaimer starts at the other
end of the stock pads. After reclaiming the stockpiles, the reclaimers need to return to their original position.
The reclaimers are identical and thus have the same reclaim speed and the same travel speed. The reclaimers
cannot pass each other. A set of stockpiles positioned on the two stock pads has to be reclaimed. Each
stockpile has a start and end position and thus a length. When a stockpile is reclaimed, it has to be traversed
along its entire length by one of the reclaimers, either from left to right or from right to left. The reclaim time
of a stockpile is determined by its length and the reclaim speed of the reclaimers. The goal is to reclaim the
stockpiles and minimise the maximum of the return time of two reclaimers to their original positions.

In Angelelli et al. (2013), we have shown that this variant of the reclaimer scheduling problem is NP-complete
and have introduced three approximation algorithms for its solution. The three approximation algorithms
use different rules for deciding which stockpiles are to be served by each of the reclaimers, but in all three
algorithms the reclaimers employ a simple out-and-back routing strategy to reclaim their assigned stockpiles.
To decide on the assignment of stockpiles to reclaimers, the three algorithms divide each of the pads into two
parts and assign the stockpiles on left of the dividing point to the left reclaimer and the remaining stockpiles
to right reclaimer. The algorithms differ in how the dividing points are chosen.

In this paper, we discuss the results of a computational study in which the performance of implementations
of the different approximation algorithms are compared on randomly generated instances. The results demon-
strate that high-quality solutions can be obtained efficiently for instances with widely varying characteristics.

Keywords: Stockyard management, scheduling, routing, approximation algorithm

22nd National Conference of the Australian Society for Operations Research, Adelaide, Australia, 1–6 December 2013 
www.asor.org.au/conferences/asor2013

272



1 INTRODUCTION

We investigate a reclaimer scheduling problem that arises in the management of a stockyard of a coal export
terminal. Coal is a blended product and is assembled or built at a coal terminal in the form of stockpiles
before being loaded on to a ship and transported to their final destination. Stackers are used to add arriving
coal to stockpiles in the yard at the terminal, and reclaimers are used to reclaim finished stockpiles so they
can be loaded onto ships waiting at the berths. The scheduling of the reclaimers is a critical component in the
effective management of a stockyard. We consider a variant in which two reclaimers serve two parallel stock
pads, i.e., the reclaimers move back and forth along the length of the pads and reclaim stockpiles from both
pads. However, since the two reclaimers move on the same rails they cannot pass each other. The goal is to
reclaim a set of stockpiles with given positions on the pads as quickly as possible.

The scheduling of yard cranes and quay cranes in container terminals has some similarities to the scheduling
of bucket wheel reclaimers in coal terminals. In both situations, the machines move along a single rail track
and thus cannot pass each other, and the machines can only handle object (a container in the case of yard and
quay cranes and a stockpile in the case of a bucket wheel reclaimer) at a time. Below, we discuss some of the
literature on the scheduling of equipment in container terminals.

Peterkofsky and Daganzo (1990) develop a branch-and-bound algorithm for the static quay crane scheduling
problem. Kim and Park (2004) address a quay crane scheduling problem for a single container ship. They
propose a branch-and-bound algorithm as well as a greedy randomized adaptive search procedure. Moccia
et al. (2006) present of reformulation of the problem studied by Kim and Park (2004) and develop a branch-
and-cut algorithm to solve it exactly. The quay crane scheduling problems considered in the papers above
do not include a no-passing constraint. The first papers to consider quay crane scheduling problems with a
no-passing constraint are Ng and Mak (2006) for a single container ship and Liu et al. (2006) for multiple
container ships. Liu et al. (2006) focus on minimising the time to unload and load a container ship and they
propose a heuristic for solving this problem. Lim et al. (2004) introduce an alternative mathematical model, a
branch-and-bound algorithm, and a simulated annealing algorithm for the problem considered by Ng and Mak
(2006).

For yard crane scheduling, Young Kim and Hwan Kim (1999) focus on minimising the sum of the set up travel
time of cranes in a container storage block by modeling the process as a mixed integer programming model.
For the same setting, Kim and Kim (2003) develop heuristic algorithms. In a similar vain, and for the same
setting, Linn et al. (2003) and Zhang et al. (2002) present mixed integer programming models and heuristic
algorithms for yard crane deployment. Ng and Mak (2005b,a) study the problem of scheduling a yard crane
that has to carry out a number of handling jobs with different ready times. The objective is to minimize the sum
of job waiting times. Ng (2005) investigates the problem of scheduling multiple yard cranes so as minimise the
total ship loading time or the sum of truck waiting times in a yard zone. Petering (2009) develops a simulation
study to show that restrictive yard crane movements yield a higher quay crane work rate than a system that
allows greater yard crane mobility. Researchers also studied vehicle scheduling for container transportation in
a terminal. For a review of this material, we refer the reader to Hu and Yao (2012).

The key differences between reclaimer scheduling and quay/yard crane scheduling are: (1) Bucket wheel
reclaimers move along a rail track in between two pads and reclaim stockpiles on either pad in a series of long
travel bench cuts where the reclaimer is required to turn around at the end of each cut. On the other hand, quay
cranes run on a single rail track and load/unload containers from a vessel on the quay side and from trucks on
the yard side by moving horizontally along the rail track, moving vertically to reach the position of container to
be served and moving up and down to load/unload a container. Yard cranes are used to load/unload containers
from trucks onto a yard block and vice versa using three-dimensional movements similar to quay cranes. (2)
For quay and yard cranes the time to move between any two adjacent bays is same whereas the time to move
between any two stockpiles can differ for bucket wheel reclaimers.

The only paper that we are aware of that considers the scheduling of equipment in a coal terminal is the recent
work by Hu and Yao (2012). They consider the problem of scheduling stackers and reclaimers under the
assumptions that between any two adjacent pads there is only one reclaimer to avoid the passing of reclaimers
and that the number of stockpiles on each pad is same. We study more general and challenging settings.

The remainder of the paper is organized as follows. In Section 2, we present definitions and notation. In
Section 3, we describe the approximation algorithms. Finally, in Section 4, we present the result of our
computational study.

273



2 DEFINITIONS AND NOTATION

We consider the following reclaimer scheduling problem. There are two identical reclaimers R0 and R1 that
serve two stock pads; one pad on either side of the reclaimers. Reclaimer R0 starts at one end of the stock
pads and reclaimer R1 starts at the other end of the stock pads. The reclaimers have a reclaim or processing
speed p, a travel speed s ≥ p, cannot pass each other and have to return to their original position. Each
stockpile has a given length and a given reclaim time (derived from the stockpile’s size and the reclaim speed
of the reclaimers). When a stockpile is reclaimed, it has to be traversed along its entire length by one of the
reclaimers, either from left to right or from right to left. A set of n stockpiles positioned on the two stock pads,
stockpiles 1, . . . , n1 on Pad 1 and stockpiles n1 + 1, . . . , n on Pad 2, has to be reclaimed. Each stockpile i
has a start position li and an end position ri and thus a length ri − li. When a stockpile is reclaimed, it has to
be traversed along its entire length by one of the reclaimers, either from left to right or from right to left. The
reclaim time of a stockpile i is determined by its length and the reclaim speed of the reclaimers, i.e., ri−lip .
The goal is to reclaim the stockpiles and minimize the maximum of the return time of two reclaimers to their
original positions.

3 DESCRIPTION OF THE APPROXIMATION ALGORITHMS

Before presenting the approximation algorithms, we observe that the relaxed version of the problem in which
preemption is allowed, i.e., in which the reclaiming of a stockpile can be interrupted and resumed later, pos-
sibly by a different reclaimer, can be solved easily by dividing the work, i.e., reclaim time and (unavoidable)
travel time, equally over the two reclaimers. The value of this preemptive schedule provides a lower bound on
the value of the optimal schedule.

There are two types of decisions that have to be made in the reclaimer scheduling problem: assignment deci-
sions, indicating which reclaimer will process a stockpile, and routing decisions, indicating in what sequence
a reclaimer will process its assigned stockpiles.

We have designed three approximation algorithms, which employ different rules for deciding which stockpiles
are to be served by each of the reclaimers, but in all three algorithms the reclaimers employ a simple out-
and-back routing strategy to reclaim their assigned stockpiles. To decide on the assignment of stockpiles to
reclaimers, the three algorithms divide each of the pads into two parts and assign the stockpiles on left of the
dividing point to the left reclaimer and the remaining stockpiles to right reclaimer. The algorithms differ in
how the dividing points are chosen.

In out-and-back routing each reclaimer first processes the assigned stockpiles on one of the pads while moving
towards its farthest point and then processes the stockpiles on the other pad while moving back towards its
initial position. Note that this gives four possible schedules (because a reclaimer has two choices for the pad to
process first and there are two reclaimers). The schedule that leads to the minimum makespan is chosen. (The
makespan for the different schedules can differ because of the no-passing constraint, which may force one of
the reclaimers to wait.)

SPLIT: This approximation algorithm divides the pads into two sections, a left section and a right section, and
assigns the stockpiles in the left section to the left reclaimer R0 and the stockpiles in the right section to the
right reclaimer R1. In case there is a stockpile which crosses the split point, then the stockpile will be assigned
to the left reclaimer R0 if its major portion is on the left side of the split point, and to the right reclaimer R1

otherwise. Only the start and end positions of a stockpile are considered as split points. See Algorithm 1 for
more details.

In Angelelli et al. (2013) we show that SPLIT is a 2-approximation algorithm.

We also consider a slight variation, SPLIT+, in which we evaluate two schedules when there is a stockpile i
that crosses the split point: assigning stockpile i once to the left reclaimer R0 and once to the right reclaimer
R1, and take the best of the two schedules.

PARTITION: This approximation algorithm divides each pad into two sections, a left section and a right
section, and assigns the stockpiles in the left section to the left reclaimer R0 and the stockpiles in the right
section to the right reclaimer R1. Only the start and end positions of a stockpile are considered as split points.
See Algorithm 2 for more details. Note that in PARTITION there are no stockpiles that cross a split point.

So far, we have considered only the simplest routing technique, i.e. Out & Back Routing, to calculate Cmax
for a given assignment of stockpiles to the two reclaimers. But it is not hard to see that Out & Back Routing
is not always the best routing strategy. Consider, for example, the instance with four stockpiles of lengths

274



Algorithm 1 The SPLIT algorithm

Input: Start positions of the stockpiles l1, ..., ln, end positions of stockpiles r1, ..., rn, processing speed p and traveling speed s. Merge the sequence
l1, ..., ln and r1, ..., rn and sort them in nondecreasing order to obtain the set of potential split points α1, ..., α2n.
Output: Makespan C∗

max and S∗

Set C∗
max =∞

for i = 1, ..., 2n do
for k = 1, ..., n do

if (rk + lk)/2 ≤ αi then
Assign stockpile i toR0

else
Assign stockpile i toR1

end if
end for
Calculate Cmax for the corresponding schedule S
if Cmax ≤ C∗

max then
Set C∗

max = Cmax and S∗ = S
end if

end for

Algorithm 2 The PARTITION algorithm

Input:
J1 = {1...n1}, the set of stockpiles on Pad 1, J2 = {n1 +1...n}, the set of stockpiles on Pad 2, start positions of the stockpiles l1, ..., ln, end positions
of stockpiles r1, ..., rn, processing speed p and traveling speed s.
Output: Makespan C∗

max and S∗

Set C∗
max =∞

for k = 1, ..., n1 + 1 do
for h = n1 + 1, ..., n+ 1 do

Assign toR0 the subsets J(1)
1 = {j | j < k} and J(1)

2 = {j | n1 < j < h}
Assign toR1 the subsets J(2)

1 = J1 \ J(1)
1 and J(2)

2 = J2 \ J(1)
2

Calculate Cmax for the corresponding schedule S.
if Cmax ≤ C∗

max then
Set C∗

max = Cmax and S∗ = S
end if

end for
end for

2, 10, 10, 2 shown in Figure 1. Let the travel speed s be 5 and the processing speed p be 1. Furthermore
assume that stockpiles 1 and 3 are assigned to the left reclaimer R0 and stockpiles 2 and 4 to right reclaimer
R1. Out & Back Routing results in Cmax = 14.4. However, when the left reclaimer first travels to r3

1 2
2 10

3 4
10 2

Figure 1. Instance demonstrating that out & back routing is not always optimal.

without processing any stockpile, then processes Stockpile 3 while coming back, then travels to r1, and finally
processes Stockpile 1, and the right reclaimer first processes Stockpile 2, then turns and processes Stockpile 4
on the way back, the resulting Cmax is 13.6. This shows that sometimes “zigzagging” can be beneficial.

Therefore, we consider two routing improvement strategies. We note that an alternative routing can only
result in an improvement if there is waiting in the schedule produced with Out & Back Routing. Thus, in the
description of the routing improvement strategies, we assume that one of the reclaimers has to wait in schedule
S. Without loss of generality, we can assume that its the right reclaimer R1.

To achieve an improvement, the waiting time needs to be reduced (by increasing the total travel time). Since
we have assumed that R1 is waiting in schedule S, an improvement may be obtained by having R0 reach its
farthest point as early as possible and having R1 reach its farthest point as late as possible while increasing the
total travel time as little as possible. Each of the improvement strategies is designed around this idea.

Smart Out & Back Routing: We start by dividing the pads into the largest number of sections P1, P2, .., Pm
with the property that none of the stockpiles crosses a section boundary. See Figure 2 for an example. Next,
for each section Pi, we calculate the travel and processing time associated with Pad 1 from the start point
of the section to the end point of the section, denoted by W 1

i , and, similarly, the travel and processing time
associated with Pad 2, denoted by W 2

i . For each section Pi, i = 1, ...,m, let mini = min{W 1
i ,W

2
i } and

maxi = max{W 1
i ,W

2
i }. Let the farthest stockpile processed by R0 on Pad 1 be in section Pk and on Pad 2 be

in section Pj . Since the pads are identical, we may assume that j < k, i.e., the farthest point reached by R0 is

275



P1 Pj Pk Pm

Figure 2. Dividing the pads into sections for Smart Out & Back Routing.

determined by a stockpile on Pad 1. Now in each section Pi, i = 1, ..., k, R0 processes its assigned stockpiles
among those that determine mini while going forward and processes its remaining assigned stockpiles while
coming back, whereas R1 does the opposite.

We observe that the total travel time for each reclaimer in the resulting routes has not changed as both re-
claimers still process all stockpiles in one forward and one backward pass. However, the waiting time of R1

may be reduced.

The next improvement technique is a local neighborhood search technique where we try to improve Cmax by
applying local changes in the route corresponding to schedule S.

Restricted ZigZag Routing: We will describe “Restricted ZigZag Routing” for the case in which R1 incurs
waiting time, R0 processes stockpiles on Pad 1 while going forward and R1 processes stockpiles on Pad 2
while going forward, because the other cases can be handled in a similar way.

Let us denote the set of stockpiles processed by reclaimer R0 on Pad 1 going forward by M0
f =

{a01, a02, ..., a0k0} and the set of stockpiles processed by reclaimer R0 on Pad 2 going backwards by M0
b =

{a0k0+1, a
0
k0+2, ..., a

0
n0
}. Similarly let M1

f = {a11, a12, ..., a1k1} denote the set of stockpiles of Pad 2 processed
by R1 going forward and M1

b = {a1k1+1, a
1
k1+2, ..., a

1
n1
} denote the set of stockpiles of Pad 1 processed by

R1 going backwards. Note that initially, M0
f contains all the jobs on Pad 1 assigned to R0 and M0

b contains
all the jobs on Pad 2 assigned to R0, and M1

f contains all the jobs on Pad 2 assigned to R1 and M1
b contains

all the jobs on Pad 1 assigned to R1.

Because R1 incurs waiting time and while going forward R0 serves stockpiles on Pad 1 and R1 serves stockpile
on Pad 2, we are interested in the local search neighborhood consisting of all moves that take a single stockpile
from M0

b and place it in M0
f and that take a single stockpile from M1

f and place it in M1
b . We employ a

simple descent search, i.e., if such a move improves Cmax, then then it is accepted, the route of the reclaimer
is updated and the search continues. See Algorithm 3 for more details.

Algorithm 3 Restricted ZigZag Routing

Input: The best schedule S obtained after solving an approximation algorithms with Out & Back Routing, where forR0, we will move a stockpile from the
setM0

b to the setM0
f , and forR1 we will move a stockpile from the setM1

f to the setM1
b .

Output: C∗
max and S∗

for i ∈M0
b do

Move the stockpiles a0i from setM0
b toM0

f at an appropriate place.
Calculate the value of objective function Cmax by serving a0i in the forward move.
if Cmax < C∗

max then
Set C∗

max = Cmax and S∗ = S i.e. update the solution value.
Update the setsM0

f andM0
b .

end if
for j ∈M1

f do
Move the stockpiles a1j from setM1

f toM1
b at an appropriate place.

Calculate the value of objective function Cmax by serving a1j in the forward move.
if Cmax < C∗

max then
Set C∗

max = Cmax and S∗ = S i.e. update the solution value.
Update the setsM1

f andM1
f .

break.
end if

end for
if Cmax = C∗

max then
break.

end if
end for

4 A COMPUTATIONAL STUDY

To be able to study the performance of the approximation algorithms described above, we implemented a
random instance generator requiring the following input parameters: # Stockpiles, % Large Stockpiles, %

276



Small Stockpiles, Length Range Large Stockpiles, Length Range Small Stockpiles, % Empty Space on Pad,
Travel Speed, and Reclaim Speed. For each stockpile on Pad 1, a starting position and a length are generated
(uniform randomly) in such a way that no two stockpiles on the pad overlap. The process is repeated for the
stockpiles on Pad 2. This is followed by adjustments to the lengths of the stockpiles to obtain the desired % of
empty space on the two pads (the adjustments are done in such a way that two pads are of equal lengths).

For our computational experiments the following parameters were used: # Stockpiles = 20, % Large Stockpiles
and % Small Stockpiles ∈ {30, 50, 70}, Length Range Large Stockpiles = [25,35], Length Range Small
Stockpiles = [5,15], % Empty Space on Each Pad ∈ {10, 40}, Travel Speed ∈ {2, 8, 20, 100}, and Reclaim
Speed = 1.

We have generated 10 instances for each combination of parameters. As all algorithms are very efficient on
instances of this size, we focus on comparing their performance in terms of quality only. In each of the result
tables (Table 1-3), we report the average over the 10 instances of the difference between C∗max and the lower
bound provided by the preemptive version of the problem.

Table 1. % Empty Space Pad 1 = 10, % Empty Space Pad 2 = 10

%Large-%Small Speed SPLIT SPLIT+ PARTITION PARTITION + RZZ PARTITION + Smart OB

30-70

2 7.255 6.933 6.933 6.342 6.774
8 5.751 4.315 3.570 2.975 3.411

20 5.454 3.635 2.467 2.160 2.203
100 5.292 3.291 0.978 0.926 0.953

50-50

2 6.576 6.576 6.510 6.323 6.407
8 5.167 3.967 3.566 3.070 3.543

20 4.872 3.216 2.174 2.022 2.106
100 4.713 2.846 0.893 0.827 0.893

70-30

2 6.847 6.175 6.048 5.937 5.810
8 6.074 3.848 3.360 3.034 3.231

20 5.927 3.497 2.360 2.098 2.161
100 5.847 3.306 0.928 0.837 0.846

Table 2. % Empty Space Pad 1 = 10, % Empty Space Pad = 40

%Large-%Small Speed SPLIT SPLIT+ PARTITION PARTITION + RZZ PARTITION + Smart OB

30-70

2 6.053 5.163 5.163 4.903 4.564
8 6.139 3.131 2.564 2.542 2.542

20 5.964 2.710 1.793 1.793 1.793
100 5.904 2.515 0.803 0.803 0.803

50-50

2 3.472 3.451 3.451 3.451 3.451
8 3.400 3.098 2.988 2.898 2.898

20 3.151 2.549 1.748 1.700 1.700
100 3.114 2.345 0.830 0.826 0.826

70-30

2 4.099 3.419 3.419 3.419 3.419
8 3.022 3.022 2.669 2.669 2.669

20 2.751 2.751 2.019 1.850 1.850
100 2.638 2.577 1.085 0.997 0.997

Table 3. % Empty Space Pad 1 = 40, % Empty Space Pad 2 = 40

%Large-%Small Speed SPLIT SPLIT+ PARTITION PARTITION + RZZ PARTITION + Smart OB

30-70

2 6.020 5.280 5.280 5.240 5.240
8 5.721 3.384 3.237 2.790 2.790

20 5.734 2.825 2.451 1.948 1.948
100 5.781 2.698 1.067 0.947 0.947

50-50

2 3.362 3.362 3.362 2.968 2.968
8 3.321 3.204 2.879 2.639 2.639

20 3.671 3.208 2.259 2.005 2.005
100 3.940 3.289 1.030 0.981 0.981

70-30

2 2.429 2.091 2.091 2.091 2.091
8 2.272 2.272 2.234 2.129 2.129

20 2.731 2.624 1.802 1.802 1.802
100 3.210 2.896 1.106 1.022 1.022

The results clearly demonstrate the benefit of evaluating the two possible assignments for the stockpile i that
crosses the split point, i.e., SPLIT+ performs noticeably better than SPLIT+. The results also show the impact
of the travel speed of the reclaimers. When the travel speed of the reclaimers gets large (relative to their reclaim
speed), PARTITION, which is able to exploit an increase in (relative) travel speed, produces schedules that
are close to optimal. Finally, we see that careful routing of the reclaimers, i.e., introducing zig-zagging, can

277



almost always improve upon simple out-and-back routing. Furthermore, introducing zig-zagging appears to
be more effective when the amount of reclaiming that needs to be done on both pads is more balanced and
when there is less empty space on the pads.

5 FUTURE WORK

In Angelelli et al. (2013), we analyze a number of variants of a basic abstract reclaimer scheduling problem.
In this paper, we presented a detailed analysis of one of the more interesting variants, namely one in which two
reclaimers need to reclaim a set of stockpiles with given positions on the pads without any precedence require-
ments between stockpiles. Up to now, we have ignored the dynamic nature of real-life reclaimer scheduling
by assuming that all stockpiles are known up front and that all stockpiles fit together on the stock pads. We
are currently studying a variant in which the stockpiles do not fit together on the stock pads and a stacking
sequence has to be determined as well.

REFERENCES

Angelelli, E., R. Kapoor, and M. Savelsbergh (2013). Complexity results and algorithms for reclaimer schedul-
ing problems. In preparation.

Hu, D. and Z. Yao (2012, November). Stacker-reclaimer scheduling in a dry bulk terminal. Int. J. Comput.
Integr. Manuf. 25(11), 1047–1058.

Kim, K. H. and Y.-M. Park (2004). A crane scheduling method for port container terminals. European Journal
of operational research 156(3), 752–768.

Kim, K. Y. and K. H. Kim (2003). Heuristic algorithms for routing yard-side equipment for minimizing
loading times in container terminals. Naval Research Logistics (NRL) 50(5), 498–514.

Lim, A., B. Rodrigues, F. Xiao, and Y. Zhu (2004). Crane scheduling with spatial constraints. Naval Research
Logistics (NRL) 51(3), 386–406.

Linn, R., J.-y. Liu, Y.-w. Wan, C. Zhang, and K. G. Murty (2003, October). Rubber tired gantry crane deploy-
ment for container yard operation. Comput. Ind. Eng. 45(3), 429–442.

Liu, J., Y.-w. Wan, and L. Wang (2006). Quay crane scheduling at container terminals to minimize the maxi-
mum relative tardiness of vessel departures. Naval Research Logistics (NRL) 53(1), 60–74.

Moccia, L., J.-F. Cordeau, M. Gaudioso, and G. Laporte (2006). A branch-and-cut algorithm for the quay
crane scheduling problem in a container terminal. Naval Research Logistics (NRL) 53(1), 45–59.

Ng, W. and K. Mak (2005a). Yard crane scheduling in port container terminals. Applied Mathematical
Modelling 29(3), 263 – 276.

Ng, W. C. (2005, July). Crane scheduling in container yards with inter-crane interference. European Journal
of Operational Research 164(1), 64–78.

Ng, W. C. and K. L. Mak (2005b). An effective heuristic for scheduling a yard crane to handle jobs with
different ready times. Engineering Optimization 37(8), 867–877.

Ng, W. C. and K. L. Mak (2006). Quay crane scheduling in container terminals. Engineering Optimiza-
tion 38(6), 723–737.

Petering, M. E. (2009). Effect of block width and storage yard layout on marine container terminal perfor-
mance. Transportation Research Part E: Logistics and Transportation Review 45(4), 591–610.

Peterkofsky, R. I. and C. F. Daganzo (1990). A branch and bound solution method for the crane scheduling
problem. Transportation Research Part B: Methodological 24(3), 159–172.

Young Kim, K. and K. Hwan Kim (1999). A routing algorithm for a single straddle carrier to load export
containers onto a containership. International Journal of Production Economics 59(1), 425–433.

Zhang, C., Y.-w. Wan, J. Liu, and R. J. Linn (2002). Dynamic crane deployment in container storage yards.
Transportation Research Part B: Methodological 36(6), 537–555.

278




