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Abstract: We propose and justify a model for seasonal rainfall using a copula of maximum entropy to model
the joint distribution and using gamma distributions to model the marginal monthly rainfalls. The model allows
correlation between individual months and thereby enables a much improved model for seasonal variation. A
central theme is the principle of maximum entropy which we use to find the most parsimonious representation
for the underlying distributions—using the minimum possible number of parameters to model the relevant
physical characteristics. A particular emphasis is the use of the gamma distribution to model the marginal
monthly rainfalls.

We wish to simulate monthly and seasonal rainfall at Kempsey, NSW during February–March–April. Our first
task is to explain why we choose to model monthly rainfall totals using the gamma distribution. The principle
of maximum entropy (Jaynes, 1957a, 1957b) states that, subject to precisely stated prior data, the probability
distribution which best represents the current state of knowledge is the one with largest entropy. We will use
this principle to argue that the gamma distribution is the best distribution to represent monthly rainfall totals
provided the means of the observed monthly totals and the natural logarithm of the observed monthly totals
are both well-defined and finite. This is true if the observed totals are always strictly positive. Our second task
is to devise a graphical representation that displays the gamma distribution in the simplest possible way—as
a straight line. We will use this procedure to compare simulated data from the chosen gamma distribution to
the observed data. Our third task is to use the simple graphical representation above to compare the observed
monthly rainfall to simulated monthly rainfall generated by the chosen gamma distribution. Our conclusion
will be that there is no significant statistical difference between the simulated data and the observed data. Our
fourth task is to to demonstrate the goodness-of-fit for the observed monthly rainfall data to the selected gamma
distributions for each month. To do this we used two kinds of Q-Q plot. Firstly we plot simulated quantiles
from the gamma distribution against theoretical quantiles to determine 95% confidence intervals and then plot
observed quantiles against theoretical quantiles.

Once it has been decided that the monthly rainfallXi can be modelled by a gamma distributionXi ∼ Γ(αi, βi)
with Fi(x) = Fαi,βi(x) then the observed data set {xi,j}j=1,2,...,N can be transformed into a corresponding
data set {ui,j = Fi(xi,j)}j=1,2,...,N for each i = 1, 2, . . . ,m. This has the effect of removing seasonal
factors from the observed data and also preparing for the use of a copula of maximum entropy to model
the joint distribution of the monthly rainfall totals. The next step in the modelling process is to construct a
joint probability distribution for the entire three-month time period. Past studies of rainfall accumulations
over several months (Katz and Parlange, 1998; Rosenberg et al., 2004; Withers and Nadarajah, 2011) have
observed that for models with independent marginal distributions the seasonal variance is often too low. It
has been suggested that this happens because there is an overall positive correlation between the individual
monthly totals. Since the observed data shows positive correlation for February-March-April at Kempsey our
aim will be to construct a joint distribution so that the desired marginal distributions are preserved and so
that the grade correlation coefficients match the observed rank correlation coefficients. We construct the joint
distribution using a checkerboard copula of maximum entropy (Piantadosi et al., 2012a, 2012b).

Finally we compared the observed rainfall to rainfall generated by three different models (a) a maximum
likelihood gamma distribution that models seasonal rainfall but does not generate individual monthly rainfalls.
(b) a checkerboard copula of maximum entropy with marginal gamma distributions that preserves the observed
rank correlation coefficients and (c) a joint distribution with independent marginal gamma distributions. We
conclude that the copula of maximum entropy provides an excellent model for rainfall simulation.
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1 MODELLING MONTHLY RAINFALL

The gamma distribution is often used to model rainfall accumulations. A common justification is that it is
sufficiently flexible to model a wide range of observed data. While this may be true the argument is essentially
subjective. The principle of maximum entropy (Jaynes, 1957a, 1957b) provides an objective justification.

1.1 Maximum entropy and the gamma distribution

We assume that X is a random variable and that the observed values {xn}Nn=1 are strictly positive. We wish
to find a probability density f : (0,∞)→ (0,∞) such that the differential entropy

h(f) = (−1)

∫ ∞
0

f(x) loge f(x)dx (1.1)

is maximized subject to the additional constraints imposed by the observed means

E[X] = x =
1

N

N∑
n=1

xn and E[logeX] = loge x =
1

N

N∑
n=1

loge xn. (1.2)

We can formulate this problem as a convex optimization with linear constraints. From the theory of Fenchel
duality and the Fenchel-Young inequality (Borwein and Vanderwerff, 2010 [pp. 171-178]) we have

p = inf
f∈L1[(0,∞)]

{
−h(f)− 1 | E[1] = 1, E[X] = x,E[logeX] = loge x

}
≥ sup

(α,β,κ)∈R3

{
loge κ− x/β + (α− 1)loge x− κ

∫ ∞
0

xα−1e−x/βdx

}
= sup

(α,β,κ)∈R3

{
loge κ− x/β + (α− 1)loge x− κΓ(α)βα

}
= sup

(α,β,κ)∈R3

ϕ(α, β, κ)

= − loge[Γ(α)β] + (α− 1)ψ(α)− (α+ 1) = d (1.3)

where the parameters α, β and κ are determined by the equations

loge β + ψ(α) = loge x, αβ = x, κ(α, β) =
1

Γ(α)βα
(1.4)

and where ψ(α) = Γ ′(α)/Γ(α) is the digamma function. The supremum and the conditions (1.4) are found
simply by solving the equations ∂ϕ/∂α = 0, ∂ϕ/∂β = 0 and ∂ϕ/∂κ = 0. The function

fα,β(x) =
1

Γ(α)βα
xα−1e−x/β

which arises naturally in (1.3) when solving the dual optimization problem to find d is the probability density
on (0,∞) for the gamma distribution with parameters α and β. IfX is a random variable with this distribution
we write X ∼ Γ(α, β). In the case where α and β are determined by (1.4) then the additional constraints
(1.2) are also satisfied. Since it is easy to show that −h(fα,β) − 1 = d it follows that p = d and that fα,β
is the unique solution to our original convex optimization problem. Note that the equations (1.4) are also the
maximum likelihood equations used to estimate α and β if one has decided a priori to fit a gamma distribution.

1.2 A linear representation of the gamma distribution

Let X ∼ Γ(α, β) be a gamma random variable with probability density f(x) = fα,β(x) for x ∈ (0,∞).
Therefore

(loge f)(x) = (α− 1) loge x− x/β − α loge β − loge Γ(α)

and hence by differentiating both sides and substituting y = 1/x we obtain

(loge f) ′(1/y) = (α− 1)y − 1/β. (1.5)

Note that the reciprocal random variable Y = 1/X has probability density given by g(y) = f(1/y)/y2 for
y ∈ (0,∞). Choose h > 0 and consider the collection of half-open intervals y ∈ (2rh, 2(r + 1)h] for
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r = 0, 1, . . . , R. Write ηr = (2r + 1)h for r = 0, 1, . . . , R to denote the midpoints of these intervals. Let
{yn}N1 denote the observed values of Y in an experiment with N independent trials and let nr be the number
of outcomes lying in the interval (2rh, 2(r+ 1)h]. The corresponding observed frequency is p̂r = nr/N . The
actual probability is given by

pr =

∫ 2(r+1)h

2rh

g(y)dy ≈ 2hg(ηr) = 2hf(1/ηr)/η
2
r =

2f(1/ηr)

(2r + 1)2h

which we can rewrite as f(1/ηr) ≈ (2r + 1)2hpr/2. If ξr = 1/(2rh) then 1/ηr < ξr < 1/ηr−1 for
r = 1, . . . , R and it follows that

(loge f) ′(ξr) ≈
(loge f)(1/ηr−1)− (loge f)(1/ηr)

1/ηr−1 − 1/ηr
= (4r2 − 1)h loge

2r − 1

2r + 1

√
pr−1
pr

= w(r, pr−1, pr).

Let yr = 2rh⇔ 1/yr = ξr in which case the above approximation and equation (1.5) give

w(r, pr−1, pr) ≈ (α− 1)2rh− 1/β (1.6)

for each r = 1, 2, . . . , R. For a particular experiment when N is large the probability pr is estimated by the
modified observed frequency p̂r+εr = (nr+1)/(N+R+1) for each r = 0, 1, . . . , R where the modification
avoids the possibility of a zero value. If we define wr = w(r, p̂r−1 + εr−1, p̂r + εr) then the points (yr, wr)
for each r = 1, 2, . . . , R will lie close to the line w = (α− 1)y − 1/β.

1.3 A model for monthly rainfall at Kempsey in NSW

All observed monthly totals at Kempsey (NSW) in February, March and April for 1889–2011 are positive.
Hence a gamma distribution provides the best model. Thus Xi ∼ Γ(αi, βi) where αi and βi are determined
by maximum likelihood. To simulate the monthly rainfall we used gamma distributions with parameters

α = (1.5502, 2.0134, 1.2735) and β = (100.4753, 77.2556, 91.1034).

For each month we conducted 1000 simulation trials each over N = 123 years. The plots of (yr, wr) for each
trial are shown in Figure 1. In each case the trials were used to find empirical 95% confidence intervals for wr
for each r = 1, . . . , 8. If the observed monthly rainfall can be represented by the selected gamma distribution
then the observed data (yr, wr) should be quasi-linear. The departure from true linear will mainly be due to
random error. In Figure 2 we plotted the observed data against the empirical 95% confidence intervals from
the simulated data. In all cases the observed points lie within the relevant confidence intervals.

February rainfall simulations: 1000 trials, N = 123.
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�0.4

0.030.020.010.00

March rainfall simulations: 1000 trials, N = 123.
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0.0

�0.4

0.030.020.010.00

April rainfall simulations: 1000 trials, N = 123.
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�0.4

0.030.020.00 0.01

Figure 1: Plots (yr, wr) for simulated monthly rainfall at Kempsey with Xi ∼ Γ(αi, βi) for 1000 trials with
each trial covering N = 123 years for February (left), March (centre) and April (right).

1.4 The Q-Q plots—theory, simulation and observations

Firstly we used the gamma distribution to generate 1000 simulation trials with each trial covering a period
of N = 123 years. Then we plotted the simulated quantiles against the theoretical quantiles. The results
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February rainfall: observed totals with 95% CIs.
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March rainfall: observed totals with 95% CIs.
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April rainfall: observed totals with 95% CIs.
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Figure 2: Plots (yr, wr) for observed monthly rainfall at Kempsey with empirical 95% confidence intervals
for the respective gamma distributions for February (left), March (centre) and April (right).

are shown in Figure 3. These plots show the full range of random variation that one should expect from
observations of the gamma random variable over a period of 123 years . By discarding the bottom 25 and top
25 values for each quantile from the simulated data we found empirical 95% confidence intervals. Secondly
we plotted the observed quantiles against the theoretical quantiles for the gamma distributions. The results
are shown in Figure 4. We used grey bars on these plots to show the empirical 95% confidence intervals for
the simulated quantiles of each gamma distribution. In all cases the observed values lie within the desired
intervals. Thus there is not enough statistical evidence to reject the hypothesis that the monthly rainfall totals
can be modelled by the maximum likelihood gamma distributions.
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Figure 3: Q-Q plots of the quantiles for 1000 simulated trials with each trial covering a period of 123 years
versus the corresponding theoretical quantiles for the respective maximum likelihood gamma distributions
used to model monthly rainfall at Kempsey in February (left), March (centre) and April (right).

1.5 The transformed data—removal of seasonal effects

If Xi ∼ Γ(αi, βi) where Fi(x) = Fαi,βi
(x) then the transformed monthly rainfalls Ui = Fi(Xi) are uni-

formly distributed on (0, 1) and so seasonal factors are removed from the observed data. Figure 5 shows
histograms of the observed data for transformed monthly rainfall totals at Kempsey. We used the bino-
mial distribution with N = 123, p = 0.1 and q = 0.9 to calculate approximate 95% confidence intervals
I = (p − 1.96

√
pq/N, p + 1.96

√
pq/N) = (0.047, 0.153) for the heights of the bars. All but 1 of the 30

observed frequencies lie within these limits—a failure rate of 3.3% which is consistent with what one should
expect.

2 COPULAS WITH PRESCRIBED CORRELATION

An m-dimensional copula, where m ≥ 2, is a cumulative probability distribution C(u) ∈ [0,∞) defined
on the m-dimensional unit hypercube u = (u1, u2, . . . , um) ∈ [0, 1]m for a vector-valued random variable
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Figure 4: Q-Q plots for the observed quantiles versus the corresponding theoretical quantiles for the monthly
rainfall model at Kempsey in February (left), March (centre) and April (right). The vertical grey bars denote
the empirical 95% confidence intervals for the simulated quantiles generated by the gamma distributions.
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Figure 5: Histograms of the transformed monthly rainfall totals ui,j = Fi(xi,j) in February (left), March
(centre) and April (right) at Kempsey where Fi = Fαi,βi

is the cumulative distribution for Γ(αi, βi). The
horizontal lines show the mean value and the upper and lower bounds for the 95% confidence intervals.

U = (U1, U2, . . . , Um) with uniform marginal probability distributions for the real-valued random variables
U1, U2, . . . , Um. See (Nelsen, 1999). The correlation coefficients for the joint distribution are defined by

ρr,s =
E[(Ur − 1/2)(Us − 1/2)]√

E[(Ur − 1/2)2]E[(Us − 1/2)2]
= 12E[UrUs]− 3 (2.7)

for each 1 ≤ r < s ≤ m. In order to model the joint probability distribution for a vector-valued random vari-
able X = (X1, X2, . . . , Xm) ∈ (0,∞)m with known marginals ui = Fi(xi) we simply construct uniformly
distributed random variables Ui = Fi(Xi) ∈ (0, 1) for each i = 1, 2, . . . ,m and use the m-dimensional cop-
ula C(u) = C(F (x)) = C(F1(x1), F2(x2), . . . , Fm(xm)). We say that the grade correlation coefficients for
X are simply the correlation coefficients for U defined above. That is

ρr,s =
E[(Fr(Xr)− 1/2)(Fs(Xs)− 1/2)]√

E[(Fr(Xr)− 1/2)2]E[(Fs(Xs)− 1/2)2]
= 12E[Fr(Xr)Fs(Xs)]− 3 (2.8)

for each 1 ≤ r < s ≤ m. We distinguish between the Spearman rank correlation coefficients ρ̂r,s (Nelsen,
1999) for the observed data {ui,j}j=1,...,N and the grade correlation coefficients ρr,s defined by (2.8).

3 MODELLING THE JOINT PROBABILITY WITH A CHECKERBOARD COPULA

We construct a joint distribution using a checkerboard copula of maximum entropy (Piantadosi et al., 2012a,
2012b). A trivariate checkerboard copula is a probability distribution defined by subdividing the unit cube into
n3 congruent small cubes with constant density on each one. If the density on Iijk is defined by n2hijk then
the marginal distributions will be uniform if∑

j,k

hijk = 1 for all i,
∑
i,k

hijk = 1 for all j,
∑
i,j

hijk = 1 for all k.
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In such cases we say that h = [hijk] is triply-stochastic. We wish to construct a joint density in this form with
the desired correlations. For sufficiently large n there are many ways that this can be done. The principle of
maximum entropy suggests that the best such distribution is the most disordered or least prescriptive solution—
the triply-stochastic hyper-matrix h which has the most equal subdivision of probabilities but still allows the
required correlations.

Problem 1 (The primal problem). Find the hyper-matrix h = [hi] ∈ R` where i = (i1, . . . , im) and ` = nm

to maximize the entropy

J(h) = (−1)

 1

n

∑
i ∈ {1,...,n}m

hi loge hi + (m− 1) loge n

 (3.9)

subject to the multi-stochastic constraints∑
j 6=r, ij∈{1,...,n}

hi = 1 (3.10)

for all ir ∈ {1, . . . , n} and each r = 1, . . . ,m and hi ≥ 0 for all i ∈ {1, . . . , n}m and the grade correlation
coefficient constraints

12

 1

n3
·

∑
i ∈ {1,...,n}m

hi(ir − 1/2)(is − 1/2)

− 3 = ρ̂r,s (3.11)

for 1 ≤ r < s ≤ m where ρr,s is known for all 1 ≤ r < s ≤ m.

The problem can be solved using the theory of Fenchel duality. See (Piantadosi et al., 2012a, 2012b). The
m-dimensional copula of maximum entropy is defined by m(m−1)/2 real parameters—the grade correlation
coefficients—defined in equation (2.8).

3.1 A model for February-March-April rainfall at Kempsey

We set m = 3 and n = 4. The multi-stochastic hyper-matrix h ∈ R4×4×4 describing the trivariate checker-
board copula of maximum entropy is shown below. The copula was constrained by setting ρ12 = ρ̂12 = 0.202,
ρ13 = ρ̂13 = 0.112 and ρ23 = ρ̂23 = 0.152. We calculate

h1 ≈


0.1262 0.0975 0.0733 0.0536
0.0870 0.0756 0.0639 0.0525
0.0567 0.0554 0.0527 0.0487
0.0350 0.0384 0.0411 0.0427

, h2 ≈


0.0920 0.0765 0.0618 0.0486
0.0750 0.0701 0.0637 0.0563
0.0578 0.0608 0.0621 0.0618
0.0422 0.0499 0.0573 0.0641

,

h3 ≈


0.0641 0.0573 0.0499 0.0422
0.0618 0.0621 0.0608 0.0578
0.0563 0.0637 0.0701 0.0750
0.0486 0.0618 0.0765 0.0920

, h4 ≈


0.0427 0.0411 0.0384 0.0350
0.0487 0.0527 0.0554 0.0567
0.0525 0.0639 0.0756 0.0870
0.0536 0.0733 0.0975 0.1262

,
where hi = [hijk]. The entropy is given by J(h) ≈ −0.040714. Similar results are obtained if the copula of
maximum entropy is replaced by a checkerboard normal copula although numerical calculation of the latter is
considerably more difficult (Piantadosi et al., 2012b) and the entropy is slightly less.

4 CONCLUSIONS

We compared the observed statistics for total rainfall to statistics for models using (a) the maximum likelihood
gamma distribution1 (b) the checkerboard copula of maximum entropy with marginal gamma distributions
and (c) the joint distribution with independent marginal gamma distributions. Details can be found elsewhere
(Piantadosi et al., 2012b). All models have mean 427 mm equal to the observed mean. The variances are (a)
49996 mm2 (b) 47448 mm2 (c) 38237 mm2 while the observed variance is 53325 mm2. Although the copula
of maximum entropy appears to under-estimate the seasonal variance we see that the model using a maximum
likelihood gamma distribution has a very similar variance. The selected results in Figure 6 from 16 successive
trials over a period of N = 123 years show that the sample statistics are not necessarily represenative of the
1This model generates simulated seasonal rainfall totals directly and does not generate individual monthly rainfall totals.
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underlying distribution. More reliable statistics would require observations over a much larger timespan. In
Figure 7 we compare the observed totals with a model using the maximum likelihood gamma distribution and
also show simulation results using the copula of maximum entropy over a period of 12300 years. The seasonal
statistics for both models are quite similar. We conclude that the copula of maximum entropy with marginal
gamma distributions provides an excellent model for both seasonal and monthly rainfall.
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Figure 6: Selected histograms for total rainfall from 16 successive random simulations of total rainfall at
Kempsey for February–March–April over a period of N = 123 years using the copula of maximum entropy
with marginal gamma distributions. The plots—Trial #12 (left), Trial #13 (centre) and Trial #16 (right)—
show typical sample variation for N = 123 years. The simulated mean m and variance v are shown on the
plots.
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Figure 7: Histogram for observed total rainfall for February–March–April during 1889–2011 with mean x and
variance s2 and maximum likelihood gamma distributionX ∼ Γ(3.6524, 116.9983) with mean µ and variance
σ2 (left) and histogram for a simulation trial over a period of 12300 years using the copula of maximum entropy
and marginal gamma distributions with mean m and variance v (right).
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