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Abstract

Defence decision-makers are faced with
the problem of allocating funds to logis-
tics support for the Australian Defence
Force every year. This may be viewed
as a complex, multi-criteria decision
problem that is amenable to mathemat-
ical approaches directed at priority assess-
ment and balance of investment. Our
proposed framework for objective assess-
ment of the operational impact of various
levels of logistics funding and a mathemat-
ical programming model of the logistics
allocation problem are presented in this
paper. The implementation of the frame-
work and model indicates a more effective
funding profile over the ‘status-quo’ situa-
tion of purely baseline funding which could
lead to enhancements in capability.

Introduction

The readiness of the Australian Defence
Force (ADF) is strongly dependent on the
availability of its inventory of defence
platforms. Higher levels of readiness
translate into higher costs associated with
the logistical support required to achieve
higher levels of availability. Not all defence
platforms are at the same level of readi-
ness and the costs of logistical support vary
also with platform type. Defence decision-
makers, therefore, need to make informed
decisions as to the levels of logistics funding
allocated to each defence platform. This
problem is considered to be one of Balance

of Investment (Bol). That is, to determine
the most appropriate allocation of limited
resources to achieve the best 'value for
money’ in terms of ADF capability.

One way to examine the implication of
the levels of logistics funding allocated
to each defence platform under finan-
cial constraints and other business rules
is to formulate a classical mathematical
program (MP) of the form of the capital
allocation or Knapsack problem (Winston
1994), or some extension of this basic
model (Haynes et al. 2005, Brown et al.
2004, Greiner et al. 2003, Radulescu and
Radulescu 2001). Prioritisation is usually
a necessary step to determine the relative
importance of the logistics bids. A particu-
larly important aspect of the prioritisation
step is the choice of measurement method.
Some prioritisation measurement methods
for defence are described in Nguyen 2003
and references therein. Our MP model
differs from the above studies by the nature
of the objective function, which is defined
via a set of piecewise-linear functions.

Although our problem fits within the class of
multi-activity, multi-period resource alloca-
tion problems (see for example Reeves and
Sweigart 1982, Luss and Smith 1988, Klein
et al. 1995, MirHassani et al. 2000), we
will not consider the uncertainty in the
resources or activities over time periods.
This means that our model is a determin-
istic linear or mixed-integer program and is
therefore computationally easier to solve.

Platform P Y01 Y02 Y03 Y04

Y05 Y06 Y07 Y08 Y09 Y10

Baseline 20 20 30 30

Bid 0 0 0

Total 20 20 30 35

30 0 0 0
5 5 5 0
35 5 5 0

[=N =]
[=jeje]

Table 1: Sample of Funding and Bid Data ($M) for a Platform.
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Platform Q Target No. Y01 Y02 Y03 Y04 Y05 Y06 Y07 Y08 Y09 Y10
Band 1 (High) 4 3 2 3 2 5 6 3 6 4 3
Band 2 (Medium) 5 4 5 7 7 7 5 3 5 3 4
Band 3 (Low) 13 10 9 6 19 10 9 9 11 19 18

Table 2: Sample of Readiness and Justification Data (numbers of platforms) for a Platform.

Single Metric
I I I
Mission 1 Mission 2 Mission 3 EEEEwm Mission M
I |
Capability 1 Capability 2 A Emn Capability L
[ [ ]
Platform 1 Platform 2 EEEEw Platform N

Funding bid

Figure 1: Assessment hierarchy to compute platform importance

Logistics Allocation Problem

Each year, all of the Defence platform (e.qg.
aircraft, ships, vehicles) logistics managers
submit a bid for logistics funding. The bids
include (among other things) the baseline
funding spread over the next 10 years
that the platform has been allocated; the
funding spread over the next 10 years that
the platform calculates as being required
to bring the capability to its expected
level; and a justification which is typically
presented as a difference in estimated
platform numbers against set availability
targets. These numbers and targets are
generally specified at different availability
bands (e.g. high, medium and low avail-
ability). Table 1 illustrates hypothetical
funding and bid data for a platform, and
Table 2 illustrates hypothetical readiness
and justification data for a platform.

Defence has the difficult problem of
analysing a large set of platform bids in
order to choose portfolios which meet
limited budgets while managing the overall

capability. If no additional supplementa-
tion funding is to be provided, funding for
a particular platform must be taken from
some other platform’s baseline. Defence
collects all the bids that are prioritised
within the Service Group (Army, Navy, Air-
Force), and performs a whole-of-Defence
analysis to produce funding prioritisation
recommendations from the viewpoint of
operational requirements.

Our work in support of this problem consists
of developing and applying: (1) a frame-
work for more objective prioritisation of
logistics bids; and (2) a mathematical
formulation of the allocation problem with a
decision support tool for automation of the
processl,

Prioritising Logistics Bids

Assessment Hierarchy

To assess the importance of a platform’s
funding bid, an assessment hierarchy
(Figure 1) with 3 layers is proposed. This

INote that the framework and mathematical model presented in this paper do not represent an agreed or endorsed
position by Defence. Furthermore, all data presented here is fictitious and used for illustrative purposes only.
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Criticality

This capability supplements the mission, and is of secondary impor-
tance. Loss of this capability would not cause mission failure. However
the failure of several supplementary capabilities in conjunction would

This capability is of significant importance to the mission. Failure or
deficiency of this capability will result in noticeable degradation of the

This capability is of primary importance to the mission. Failure or
deficiency of this capability will result in a severe degradation of the

The mission is critically dependent upon this capability. Deficiency of this

The role of this platform has a minimal effect on the overall ability to
The role of this platform has a significant effect on the overall ability to
The role of this platform has a major effect on the overall ability to

The role of this platform has a severe effect on the overall ability to

Level Rating Description
1 Supplementary
compromise the mission.
2 Significant
mission.
3 Primary
mission.
4 Indispensible
capability will result in complete mission failure.
Table 3: Rating Scheme for Capability Contribution to Missions
Impact
Level Ra?ing Description
1 Minor
achieve that capability.
2 Significant
achieve that capability.
3 Major
achieve that capability.
4 Severe
achieve that capability.
5 Critical

The role of this platform has a critical effect on the overall ability to
achieve that capability.

Table 4: Rating Scheme for Platform Contribution to Defence Capabilities

approach accounts for the contribution
of a platform’s role (layer 3), defence
capabilities (layer 2) and various missions
(layer 1) against which the services prepare
their respective forces. The justification
and funding bid tags are not part of the
assessment hierarchy but are used for
each platform in estimating the potential
capability enhancement and the cost of
capability, respectively (see Equation (2)).

This is a simplified version of the Bayesian
network of Platforms to Missions used
in Chisholm and Asenstorfer 2006. By
contrast, in order to keep the amount
of input data manageable and to allow
the formulation of the logistics allocation
problem as a MP model, the assessment
hierarchy employs the most widely used
Multi-Attribute Decision-Making (MADM)
method, which is the simple additive
weighting (also known as the weighted
sum) method (Edwards 1977).

This hierarchy needs to be populated with
data that represents the relative contribu-
tion/importance of elements in one layer
to those elements in the next layer above.
Working from the top, we need to repre-
sent the relative importance of each of the

missions to produce a single metric. This is
preferred because it avoids ‘multi-valued’
criteria. The values used at this layer of
the hierarchy could represent the relative
likelihood of each mission, relative conse-
quences of each mission, or (combining
these two) relative risk of each mission.
One could also use an equal weighting
scheme, or choose to focus on only a single
mission. The next two layers require data
for the relative contribution of each of the
defence capabilities to each of the missions
and the relative contribution of each of the
platforms to each of the defence capabili-
ties. Subject Matter Advisors can be used
to generate this information. The rating
scheme used for these layers are given in
Tables 3 and 4.

To obtain the platform importance index,
we first normalise all rating values of
the three layers. Let Wpmis(k), Wce(k, D),
We(l, i) be the corresponding normalised
value (weighting) of the rating values
Rumis(k), Re(k, ), Rp(l, i) from the Mission,
Capability and Platform layer respectively,
where ke {1, ... M}, [ {1,...,L},
i € {1,...,N} and M, L and N are
the number of Missions, Capabilities and
Platforms respectively. The platform impor-
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tance index, I;, is then given by

M L
= 3. Wns()( Y Welk, 0 We(t. ), (1)
k=1 =1

with Rmis(k)
Wmis(K) = ——————
2g=1 Rmis(q)

Re(k, L

Welk, 0 = —————— kb ng

g=1Rc(k. q)

Rp(l, i

We(l i) = — LD

Yoy Re(LG)

Estimating Overall Priorities

The above importance figures are used to
represent the generic importance of the
platforms - irrespective of the criticality of
the logistics bid. To take this latter aspect
into account, we use the readiness and
justification data which was illustrated in
Table 2. Evidence of a logistics induced
shortfall occurs if there is a difference in the
numbers in the ‘target’ column and those in
the ‘forward plan’. In Table 2, the boldface
type in the forward year numbers indicates
these occurrences. The shortfall is stated
as the relative (or percentage) loss in
capability, so that this can be more reliably
compared across different platforms. Note
also that there are different ‘availability
bands’. Band 1 may indicate that platforms
need to be ‘ready to go’ in under 48 hours.
Other bands may indicate longer warning
times. These are ‘rolled-up’ by assigning a
weighting scheme. One could use an equal-
weighting scheme (no preference among
bands) or any other (for example, giving
short notice bands more weight than those
with longer warning times).

Let us denote wp to be the weighting of
availability bands, tp; to be the required
target and np;j to be the estimated platform
number, where b € {1,...,B}, [ €
{1,...,N}, j € {1,...,T} and B, N and
T are the number of availability bands,
platforms and forward years respectively.
The shortfall value s; of platform i in
year j is calculated by the expression

B thi — .

bi — Nbij
Sij = E wWp —— .
b=1 toi

Finally, to produce a single value s; for
platform i, each of the years in the forward
plan are given a weighting, which we
denote by w}-. The values for s; are
then ‘rolled-up’ into one number using the
equation

;
si= ) W sij. (2)
=1

Now we calculate the overall priority,
denoted by P;, of platform i using the
equation

Pi=1Is;.

The above computation of platform priori-
ties is a useful first step in the two-step
process of the logistics funding problem.
The more difficult step is to determine the
best allocation (or in the case of no supple-
mentation, the best reallocation) of funds
across the various platforms. To solve this
decision problem, we now develop a mathe-
matical programming model.

Mathematical Programming Model

Determining an optimal logistics alloca-
tion solution has features in common with
the well-characterised knapsack problem
(Winston 1994, page 468). The knapsack
problem involves maximizing the benefit
from the contents of a knapsack, given
a range of possible items that can be
selected. Each item has a defined benefit
and weight, while the knapsack itself has a
total weight limit.

Here the logistics allocation problem
involves minimising ‘the total level of
residual capability shortfall’ by funding
some platform bids from all bid submis-
sion, while subject to a budget constraint
and various departmental business rules.
The logistics allocation problem has an
additional temporal dimension which is
not present in the knapsack problem.
In the knapsack problem, a resource is
selected and used during only one time
period. However, in the logistics alloca-
tion problem, the resource has been funded
for multiple years. The situation is also
complicated by allowing cuts to be made
from baseline funding of other platforms.
The decision variable (level of funding) may
not, therefore, be suitably represented by
a binary number, and the benefit (level of
capability) must, therefore, be adjusted to
the funding level.

Decision Variables

The decision variables of concern can
be defined as ‘the fraction of the total
funding bid to fund in each year j for each
platform i’. Denote this by x;;, where { €
{1,2,...,N} (N is the number of platforms)
and j € {1,2,..., T} (T is the number of
years out from the current financial year).
By definition, x;; must be in the range [0, 1].
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Le th def —LFFBL — , Where FE’L is the baseline

funding and F[-SjF is the shortfall funding bid

(see Table 1), then the value of x; can be
one of the followings:

» xj = 0: no funding (neither baseline
nor shortfall) for Platform ( in year j.

>0 < xj < Xg: Platform i receives
less than its baseline funding in year j
(i.e. its baseline funding is cut). This
can happen if there is no additional
supplementation funding and funds
are needed elsewhere.

> X < xj < 1: Platform i receives its

baseline funding and some of its short-
fall bid in yearj.

» xij = 1: Platform i is completely
funded in year j (if platform i
submitted a bid, this means it receives
its baseline funding and its entire bid
funding in that year. If platform i
did not submit a bid, this means it
receives its entire baseline funding in
that year).

Allowing x;j to range between zero and one,
therefore, allows greatest flexibility in the
funding options, from partial funding of the
baseline amount, to a baseline and partial
funding through to completely funding the
platform.

Objective Function

Recall, the objective is to minimise ‘the
total level of residual capability shortfall’
expressed mathematically by

mmZZLw S(xy). (3)

i=1j=1

This expression contains a product of three
terms:

» I; represents the importance of platform
i, which was calculated in Equation (1).

> w] represents the weight afforded to
elements that occur in year j in the T-
year forward plan. One schema may
assign equal weights. Another schema
may use a monotonically decreasing
set of weights, indicating a preference
or concern with the ‘inner’ years over
those in the ‘outer’ years. The values
for ij can be chosen by the user.

» S(xj) represents the capability shortfall
associated with platform { in year j
if funding is provided according to the
decision variable x;. The values for
S(x;) are computed from the following
theoretical model.

In Equation (2), we ‘rolled-up’ the data over
the forward plan years, so that a single
metric s; could be computed (to allow priori-
tising platforms). For the decision problem,
we maintain the temporal variation. The
platform capability must be also dependent
on the level of funding. Hence, the term
S(xjj) is used.

Figure 2 graphically describes the ‘cost of
capability’ model we are using.

» The horizontal axis denotes the funding
level for platform i in year j, by way of

the decision variable x;. The point at
FBL
Xy = FTLFF represents funding of the

basehne 0n|y To the left and right of this
point represents cutting the baseline
and partially funding the bid, respec-
tively. The vertical axis denotes the
percentage of shortfall for platform i in
year j, i.e. S(xj).

» There is one data point in this model.
Recall that the readiness and justifica-
tion data in Table 2 details the projected
platform numbers across the forward
plan assuming baseline funding only is
provided. Thus, when x; = Xg. we have
from this data, s;;, on the vertical axis,
Leﬂx$=5¢

We assume here that the capability is
degraded completely (S(xy) 1) if no
funding at all is provided (x; = 0) and
the capability is restored (S(xj) = 0) if
funding is completely provided (x; = 1).
Between these points, we assume a linear
change. Two forms are possible, which
represent either a situation of 55 <1 —Xg or

sj>1- XS.A Which of these exists depends

on the data for the specific platform. A
third case is also depicted in Figure 2, repre-
sented by the dotted line. This line is used
to model the situation for platforms that did
not submit a logistics bid, and is consistent

with the other two cases (i.e. the point Xg
becomes 1).

Mathematically, we define S(x;) as follows:

» For a platform with no bid,

» For a platform with a bid,
54—1
—;(o— Xijj+ 1

Sxy) =
x° 7 (xi—1) |fXU <xj<l.

if 0.< xj < Xp,
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Figure 2: Cost of Capability Model for Relating Funding Profiles with Shortfall Value

Constraints

The minimisation of the objective function
by determining the appropriate funding
profiles may be constrained by various
business rules. The most obvious is a
budget constraint:

N
BL , gSFy .. gBL H
Z[[Fq +F1'j )XU_FI}- ] <0, vje{l,...,T}.

One may wish to use various forms or
relaxations of this budget constraint. For
example, one budget profile might stipu-
late that the solution be ‘within budget
across the 4-year forward estimate (FE),
but allow over/under spends in the outer
years provided the total across the ten-
year spread is within budget’. These can
be modelled by the use of similar linear
inequalities

N
BL SF .. _ FBL
IZI:[{FU, +F3F) X — 2 ]s 0, @

vje{1,2, 3,4},

and

M=

BL SF - BL
> 2 FEE+ Py X~ FEt] < 0. (5)

-
i=1

]
=

Another common business rule might
constrain the level of baseline cutting to
platforms, or equivalently to provide a
‘funding guarantee’ to platforms.  This

avoids the problem of cutting too deeply
into one (or more) platform and causing
a ‘catastrophic’ degradation in capability.
Again, this can be modelled with simple
linear inequalities, such as for any i €
{1,....N}

;
21: [(FEL+ F3F) x;—0.8F8L] 2 0. (6)
j=

This states that the total funding profile
(over the T-year spread) for platform i is
guaranteed to be at least 80% of its (total)
baseline funding.

Other business rules might include things
such as a ‘service balanced’ portfolio,
whereby the total funding profile for each of
the three services match a specified distrib-
ution (e.g. 1/3 each). Although the ‘service
balanced’ portfolio is not explored in this
study, we consider some very restricted
constraints (that sometimes derive from
safety, political imperatives, strategic prior-
ities, etc.). For example, some platform
baseline funding can not be ‘touched’,

T
BL , FSFY .. FBL
Y [(FBE+FY x—FBL] 2 0, (7)
ieUntouched j=1
or some must be fully funded,
xj=1 VieFunded Set, Vje{l,..., T}

Notice that the class of our (MP) problem is
obviously a piecewise-linear program (P-LP)
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. ‘Status  ‘Funding ‘Funding ‘Baseline
Portfolio Delay’ Guarantee’ Untouched’
Capability Shortfall Value 0.06 0.13 0.26
Capability Shortfall Reduction(%) 88% 75% 49%
Outstanding Shortfall ($M) 675 758 876
QOutstanding Shortfall Reduction (%) 55% 49% 42%
Fully Funded Platforms 11 11 9
Partially Funded Platforms 9 9 10

Table 5: Summary of Example Optimal Funding Allocation

as follows from the definition of our objec-
tive function using the piecewise terms
S(xj). Also, it is known that any P-
LP can be converted, by several trans-
formations, to an equivalent MP problem
in which the piecewise linear terms are
replaced by linear terms (Fourer 1992).
For every linear piece, such a transforma-
tion adds a few constraints or variables,
including a zero-one integer variable. The
resulting linear or mixed-integer formula-
tion is then readily expressed and solved
with any solver available. We use the
algebraic modelling language, AMPL (Fourer
et al. 2002, Chapter 14), in the implemen-
tation of our decision support tool as it
automatically handles all these transforma-
tions.

Numerical Experiments

Optimal Funding Allocation Results

An illustrative example consisting of 20
missions, 50 capabilities and 120 platforms
was used, and the resulting MP problem
is solved with 1742 variables and 602
constraints. Optimal solutions are produced
within seconds on a standard desktop
machine using the CPLEX Solver (Version
8.1) and AMPL (Version 20021031) (cf. ILOG
2002). This allows various what-if analyses
to be easily and quickly conducted. Table 5
presents the summary results of the
optimal logistics funding allocation. In this
table there are 4 types of solutions.

» ‘Status Quo’ is to simply give all
platforms their baseline funding. No MP
problem needs to be solved in this case.

» ‘Funding Delay’ allows the baseline to
be cut totally in some years but the total
funding profile over the 10-year horizon
is guaranteed to be at least 80% of its
total baseline. The P-LP (3)-(6) is solved:

N T
min Z ZI;- w}' S(xij),
i=1j=1
subject to

0<xj<1, Vi={l,...,N}, Vj={1,...,T},

N
E[(Fﬁwg”) xj-FB'] <0,vj€{1,2,3,4},
=

BL SF . BL
[(F8-+ FFy x = FBL] <0,

1M

T
=1j=1

M~

BL SF .. BL
_ [{F(.j +FEF) xj - 0.8 F8 ]zo.

J

]
—

» ‘Funding Guarantee’ provides all
platforms with 80% baseline funding in
every year. The last constraint of the
previous P-LP (‘Funding Delay’ case) is
replaced by

BL | FSFy o .. BL
(FEL4+FF) xy - 0.8 FEL > 0,
vie{l,....N}, Vje{l,...,T}.

» ‘Baseline Untouched’ is to ask ‘what if
the baseline of some platforms cannot
be cut?’ We again solve the previous P-
LP (‘Funding Guarantee’ case) with the
extra constraint (7).

In this hypothetical example the model
suggests that the capability shortfall can
be substantially reduced (by 49% — 88%
relative to the ‘Status Quo’ situation) by
redistributing some baseline funding (to
reduce 42%—55% of the outstanding short-
falls). We see that imposing the additional
constraints (Baseline Untouched) means
that the solution found is now somewhat
inferior. Here, the model suggests only
49% reduction in capability shortfall and
only 42% of outstanding shortfalls can be
reduced. More partially and less fully
funded platforms are also observed.

Budget Line Analysis

Another type of analysis possible is to inves-
tigate the situation where there ‘is a budget
line’ (i.e. there is supplementation available
for logistics shortfall funding, but obviously
not large enough to fund all bids). This is
easily handled by adding terms B; to the
budget constraints (4)

N
BL , pSFy .. FBL Y
D[ FE+FN xi—Fit | <Bj, Vi€ {1,2,3,4),

=1
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Extra fund Capability Shortfall Fully Fund Partially Fund Shortfall
per year ($M) Reduction Number Total SF($M) Number Total SF($M) Reduction (%)
0 75% 11 587 9 155 49%
25 90% 11 587 9 320 60%
50 95% 12 987 10 250 82%
100 99% 12 987 11 364 90%

Table 6: Summary of Example Budget Line Analysis

and (5)
N T
ZZI:[(F? +F5F) x - FEL] < B),
=1j=

and then resolving the P-LPs. A summary
of this type of analysis with the ‘Funding
Guarantee’ case is presented in Table 6.

The model suggests that the residual
capability shortfall can be progressively
reduced by additional supplementation.
The approximate cost of effectively
removing this is about $100M per year.
The model also appears to suggest a 10%
‘mark-up’ on bids (i.e. with $100M per year
supplementation the capability shortfall is
reduced by almost 100%, but only 90% of
the total shortfall funding is required to be
given).

Conclusion

This paper presents the development and
illustration of a mathematical approach for
priority assessment and balance of invest-
ment for the logistics allocation problem.
Where possible, it utilises existing numer-
ical performance metrics to allow quantita-
tive analysis. The subsequent model can be
used to suggest a possibly more effective
funding profile over the ‘Status Quo’ and
can quantify the estimated improvement.

Note that in order to more fully appre-
ciate the value of the proposed frame-
work and model, the analysis should
be compared with the current approach
adopted by Defence and the funding
solutions it produces. What is clear,
however, is that the framework and model
assists in making explicit the assumptions,
constraints and value-functions associated
with the decisions as well as a tool for
automating some of the currently time-
consuming manual processes. The formu-
lation of the decision problem as a MP
also allows a quick what-if capability, for
example quarantining certain platforms
from any funding cuts or investigating
the impact of supplementation. Additional
business rules (e.g. service-balancing) may
also be incorporated into the model.

However, the current version of the model
is restricted to assuming independence
between platforms and significant verifi-
cation and validation of the data model
are required. Extension to incorporate
the synergistic nature of defence platforms
(e.g. using a Bayesian Belief Network
as in Chisholm and Asenstorfer 2006
or Constraint Programming Models as in
Hentenryck 2002) may further enhance the
models applicability.

Acknowledgement

The authors would like to thank Dr. Ken
Robinson, Dr. Ping Cao and several staff
from Planning and Guidance Branch, DSTO,
for their comments and suggestions on the
initial idea of the assessment hierarchy.

Reference

[1] Gerald G. Brown, Robert F. Dell, and
Alexandra M. Newman. Optimization
Military Capital Planning. Interfaces,
34(6):415-425, 2004.

[2] John Chisholm and Peter Asenstorfer.
Development of a Preparedness Risk

Assessment Methodology. (DSTO-
TR-1870), Defence Science and
Technology Organisation, Australia,
2006.

[3] W. Edwards. How to use multiat-
tribute utility measurement for social
decision making. /EEE Transactions on
Systems Man and Cybernetics, SMC-
7:326-340, 1977.

[4] Robert Fourer. A Simplex Algorithm
for Piecewise-Linear Programming IlI:
Computational Analysis and Applica-
tions. Mathematical Programming,
53:213-235, 1992.

[5] Robert Fourer, David M. Gay, and
Brian W. Kernighan. AMPL: A
Modeling Language for Mathemat-
ical Programming. Duxbury Press,
Brooks/Cole Publishing Company, 2nd
edition, 2002.

ASOR BULLETIN, Volume 25 Number 4, December 2006



(6]

(71

(8]

(9]

[10]

(11]

Michael A. Greiner, John W. Fowler,
Dan L. Shunk, W. Matthew Carlyle, and
Ross T. McNutt. A Hybrid Approach
Using the Analytic Hierarchy Process
and Integer Programming to Screen
Weapon Systems Projects. IEEE Trans-
actions on Engineering Management,
50(2):192-202, 2003,

Constraint
in OPL.
Computing,

Pascal Van Hentenryck.

and Integer Programming
INFORMS  Journal on
14(4):345U-372, 2002.

ILOG. ILOG AMPL CPLEX System,
Version 8.1, User’s Guide. ILOG,
December 2002.

R. S. Klein, H. Luss, and U. G.

Rothblum. Multiperiod Allocation of
Substitutable Resources. European
Journal of Operational Research,
85(3):488-503, 1995.

H. Luss and D.R. Smith. Multiperiod
Allocation of Limited Resources: A
Minimax Approach. Naval Research
Logistics, 35(4):493-501, 1988.

S. A. MirHassani, C. Lucas, G. Mitra,
E. Messina, and C. A. Poojari. Compu-
tational Solution of Capacity Planning

(12]

(13]

[14]

[15]

[16]

Models Under Uncertainty.  Parallel
Computing, 26(5):511-538, 2000.

M.-T. Nguyen. Some Prioritisation
Methods for Defence Planning. (DSTO-
GD-0356), Defence Science and
Technology Organisation, Australia,
2003.

Constanta Z. Radulescu and Marius
Radulescu. Decision analysis for the
project selection problem under risk.
In 9th IFAC / IFORS / IMACS / IFIP/
Symposium On Large Scale Systems:
Theory and Application, pages 243-
248, Bucharest, 2001.

Gary R. Reeves and James R. Sweigart.
Multiperiod Resource Allocation with
Variable Technology. Management
Science, 28(12):1441-1449, 1982.

Steven R. Haynes, Thomas George
Kannampallil, Lawrence L. Larson, and
Nitesh Garg. Optimizing Anti-Terrorism
Resource Allocation. Journal of
the American Society for Information
Science and Technology, 56(3):299-
309, 2005.

W. L. Winston. Operation Research
Applications and Algorithms. Duxbury
Press Belmont, CA, 1994.

ASOR BULLETIN, Volume 25 Number 4, December 2006



10

ASOR BULLETIN, Volume 25 Number 4, December 2006



