
__
ASOR BULLETIN, Volume 22 Number 4, December 2003 1

Applying Lagrangian Relaxation to the Submarine Transit
Problem

L. Caccettaa, M. Grigoleita, and V. Rehbocka

a West Australian Centre of Excellence in Industrial Optimisation (WACEIO), Department of Mathematics
and Statistics, Curtin University, GPO Box U 1987, Perth, WA 6845, Australia

Abstract

A new approach to the constrained shortest
path problem (CSPP) is applied in the
context of submarine path planning through
a region of sonar detectors. This uses fast,
convergent methods to find the optimal
Lagrange multiplier and Dijkstra’s algorithm
to find initial solutions. On a test set of 120
cases, the resulting paths are almost always
within 3% of optimal, with solution times
under 1 second on a 2.4 GHz desktop
computer. Given the performance of this
method on problems with over 6400 nodes,
extension to much larger problem sizes
appears feasible.

Introduction

The task of planning a submarine path
through a field of sonar detectors has
strategic importance in marine defence. This
is a difficult problem for many reasons: the
constrained shortest path problem (CSPP) is
known to be NP-complete; results reported
to date tend to involve relatively small
networks, up to 1000 nodes (to adequately
model ocean conditions requires much
larger networks); and computation time is
critical, especially in tactical situations.

Of particular importance, then, is the tradeoff
between computation time and optimality.
The desired goal is to find near optimal
solutions with minimal computation time. We
are primarily concerned with very large
networks, of at least 6400 nodes, which
allow us to model a square transit field with
an 80 km side. This gives a resolution of 1.0
km per edge.

This paper explores the application of
Lagrangian relaxation to the submarine
transit problem in order to evaluate how well
it can produce near optimal results on large
networks in minimal time.

Problem Definition

The field of traversal is represented as a
square array of nodes, with horizontal,
vertical and diagonal arcs between adjacent
nodes. The vehicle is assumed to travel
from the origin (0,0) in the lower left to (N, N)
in the upper right hand corner. Each sonar
detector is a point in the field, with the
probability of detection at each node in the
NxN array based on its distance from the
detector. We consider two possible vehicle
speeds, 8 and 14 km/h. The detection
probability as a function of distance is given
in Figure 1. Notice that the probability is very
high at the origin then generally drops off
with distance. Note the second peak at about
64 km which may be a feature of underwater
reflection and resonance.

A path consists of a list of adjacent nodes
from start to finish. There is no cost
associated with changing speed from one
node to the next.

Several simplifying assumptions are made
including:
• The detectors are stationary
• The vehicle depth is not important
• There are no islands or other

obstructions to travel or to signals
• Ocean currents, which affect speed, are

ignored
• Vehicle propulsion issues (battery

charge and fuel) are not considered
• The vehicle may only travel at one of 2

speeds along each edge
• All detectors share the same detector

function.

The transit field is modelled as a square
array of nodes in which every pair of
adjacent nodes is connected by 4 edges for
both speeds in both directions. This includes
diagonal edges as well as horizontal and
vertical ones. An array 80km square
contains 6561 nodes and 103,040 edges.

__
2 ASOR BULLETIN, Volume 22 Number 4, December 2003

Each edge has a cost, which is the
probability of detection (calculated from the
given detection ans sensor location
patterns), and a transit time. The only
constraint is an upper bound on the transit
time. The optimisation problem is formulated
as minimising the cost function within the
given transit time constraint.

For test purposes we use a reference set of
30 detector patterns, each containing 4
detectors. Each of the 30 problem sets has
the same lower bound on the time constraint
(11.43 hours) and an upper bound that
varies but is around 19 hours. We use 4
different time constraints per problem,
chosen at 20, 40, 60 and 80 percent of the
difference between upper and lower bounds,
giving a total of 120 test cases.

Approach

The approach we describe in this paper is
derived from the Lagrangian relaxation (LR)
method described by Carlyle & Wood in [2].
For a cost function given by

iixcz
i
∑=

we add the single constraint (transit time of
each edge) into the objective function to give

∑ −+=
i

gxFczL iii λλ)(

where
c is the edge cost
c' is the modified edge cost, c + λF
x is the binary variable for edge i (0 means

edge not used)
λ is the Lagrange muliplier
F is the transit time of the edge
g is the upper time bound
z is the cost of the path using original edge

costs c
zL is the cost of the path using modified

edge costs c'

The two main techniques involved are: (1)
the calculation of the Lagrange multiplier λ;
and (2) the application of Dijkstra’s algorithm
to find the shortest path using modified edge
costs. We discuss the calculation of λ later.

We have implemented Dijkstra’s algorithm
with a couple of modifications. The first is the
use of an insertion sort to manage the list of
active nodes under consideration, as
opposed to using a Fibonacci heap [3].
Secondly, we exploit the structure of the
regular grid network to discard nodes after
they fall behind the wave front, thus leaving
O(n) nodes in the list. We thus achieve
speeds comparable to F-heaps without the
code complexity.

Detector probability functions

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

Distance (km)

14 km/h 8 km/h

Figure 1 - Detection probability vs Distance (km)

__
ASOR BULLETIN, Volume 22 Number 4, December 2003 3

Pattern (5,1)

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

lambda

co
st iCost

minCost2

Figure 2 – initial path cost and minCost2 vs λ

The first pass of the method involves
calculating the shortest path using Dijkstra’s
algorithm on the original edge costs. The
cost of this path is zmin. If the transit time of
this path is within the upper time bound, we
have an optimal solution. If not, we proceed
with the Lagrangian relaxation (LR).

LR involves finding the value of λ for which
the cost of the shortest path using the
modified edge costs – minCost2 – is
maximum. As can be seen from Figure 2,
this corresponds to the minimum value for z.
The graph shows a plot of initial path cost
(iCost) and the minCost2 values as a
function of λ. The value iCost is simply the
cost of the minCost2 path using the original
edge costs.

What we need is an efficient way to find the
value of λmax at the peak of the minCost2
curve. The y-intercept of this curve at λ=0
corresponds to zmin. At the right of the curve
we want to find the value of λ at which
minCost2 is again equal to zmin. This we call
λmin. Knowing these two values for λ will help
us find λmax.

First, here is the method for finding λmin.

set λ=1.0
do:

set all modified edge costs c'
using this λ

apply Dijkstra’s algorithm to
get zL

extract the resulting path
based on c' edge costs

using this set of edges, vary
λ downwards until zL is just
below minCost

set new value of λ
until λ doesn’t change from the
previous iteration.

The calculation that uses the edge costs of
an initial solution and varies λ can be done
in O(n) time. This usually takes only 3 or 4
iterations.

To calculate λmax we first take the two
endpoints of the curve where λ=0 and λ=λmin
and get initial mincost2 solutions using these
two values of λ. We approximate tangent
lines to the curve at these points by
calculating the zL value of λ=0.01 and
λ=0.95* λmin. and then find the intersection
point of these two lines. This gives us a first
approximation of λmax. We then update either
the left or right tangent line based on the
slope at that point being negative or positive,
and update the right or left value of λ. This is
repeated until λ does not change. In practise

__
4 ASOR BULLETIN, Volume 22 Number 4, December 2003

this may take up to 8 iterations, but usually 4 to 6 are sufficient.

iCost as % above optimal

-1.0000

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117

Pc
t a

bo
ve

 o
pt

im
al

Figure 3 – initial path cost above optimal for all 120 cases

do:

calc the intersection point of
the two tangent lines

set all modified edge costs c'
using this λ

apply Dijkstra’s algorithm to
get zL for that λ based on
the slope of the tangent at
that point, update either
the right or left value for
λ

until λ does not change

We thus have fast methods for calculating
both λmin and λmax.

Reference values

For comparison purposes, a mixed-integer
linear program (MILP) model was used to
generate optimal solutions with CPlex. We
use 3 significant figures for all edge costs
(eg. 0.000 to 0.999) in order to allow CPlex
to converge more easily. The code for both
methods was written in C++ using STL
container classes, and run on a 2.4 GHz
desktop computer.

Initial Paths

If we limit our interest to initial paths for the
80x80 problem, we get the results shown in
Figure 3 and Table 1. Note that all but 5 of

the 120 results are within 3% of optimal, with
the worst case just over 6% above optimal.
The 5 results above 3% are the result of
only 3 detector patterns.

Time
bound

CPlex
cpu

(sec)

LR
cpu

(sec)

LR %
above
optimal

0.20 619.90 0.70 0.56
0.40 527.48 0.63 0.82
0.60 506.78 0.52 0.30
0.80 59.54 0.40 0.12
All

Problems
428.42 0.56 0.45

Table 1 – Summary of 80x80 results

The computation time for each case is about
half a second on average, and about half of
this time is taken in calculating the initial
edge costs during setup.

There is some variation by time bound, but
not as great as one might expect. What is
impressive is the fact that, except for a small
number of cases, we get results that are
within 3% of optimal and our CPU times are
2 to 3 orders of magnitude smaller than
using CPlex.

Of the 120 cases, one third of initial shortest
path solutions will be within the time bound,
and thus be optimal. One third will be under
time, and one third will be over the time

__
ASOR BULLETIN, Volume 22 Number 4, December 2003 5

bound. However, because we have fast and
slow edges in parallel, it is always possible
to adjust the initial path using edge swaps to
adjust the path time up or down to be within
the time bound.

In general, these initial paths follow very
closely the optimal paths generated by
CPlex.

The CPU time for the LR method is
dominated by number of times that Dijkstra’s
algorithm is called, which on average is
called 17 times per problem. Across problem
sizes of n = (20, 40, 80, 120, 160) nodes per
edge, we observe O(n3) computation time.

Dijkstra's algorithm time vs Size

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180

Size n

C
PU

 m
s

(c
ub

e
ro

ot
)

 Figure 4 - Dijkstra's algorithm time vs grid
size

As an upper limit, consider scale of 250m
per edge, with 321 nodes per side of an
80km grid, we have 103,041 nodes and
1,640,960 edges. If Dijkstra’s algorithm is
called 17 times and takes approximately 1
second, this gives an estimated solution
time of about 17 seconds. In practise, a
problem of this size is solved by the LR
method with an average time of about 16
seconds. This corresponds to a MILP
problem of 1.6m decision variables and
103,041 constraints.

There is a duality gap between minCost2
and optCost. For half of the cases, this is
below 0.1% but for 10/120 cases it ranges
from 2 to 8%. The gap between minCost2
and iCost is similar, but the optimal cost may

lie anywhere within this gap, and thus is not
an especially good predictor of optimality.

Search results

The tree-based enumeration search
described in [2] doesn’t work very well here.
The tree-based enumeration depends on
having good bounds for z, zL, and time (the
side constraint). Because of the structure of
this problem with parallel fast/slow edges, it
is always possible to find shorter (quicker)
paths, so the intermediate time bound is of
no use here. This is one practical problem
for which an optimal λ does not
exponentially reduce the solution space, as
claimed in [2].

Despite the long search times, a time limit of
5 minutes was implemented and the search
run on all 120 cases for 3 different scales.
The results are shown in Table 2 below.
Even for the 20x20 size, there is one case
that takes an inordinately long time.

Conclusions and Further Work

We have applied the Lagrangian relaxation
approach described by Carlyle & Wood to
the submarine transit problem. We have
developed a quick way to find the Lagrange
multiplier for a singly constrained problem,
and the computation times are 2 to 3 orders
of magnitude faster than using CPlex, while
achieving results that are usually withing 3%
of optimal.

Unfortunately, the bounded tree search of
Carlyle & Wood is not suitable for this
problem due to weak time bounds and the
duality gap that exists in this problem.

Further work might look at problems with
more than one side constraint, and also
finding a better search method to improve
on the already good initial solutions while
keeping the computation time small.

 CPU times for LR search – number of cases
Size < 1 sec 1-60 sec 1-5 min > 5 min
20 x 20 118 1 0 1
40 x 40 89 11 4 16
80 x 80 72 12 1 35

Table 2 – Summary of search times

__
6 ASOR BULLETIN, Volume 22 Number 4, December 2003

Acknowledgements

This project has been supported by the
Australian Research Council grant (DP
034639). We are grateful to the ARC for
their support. The authors would also like
to thank the Defence Science Technology
Organisation for providing the data on the
sonar detector functions.

References

[1] V. Rehbock, L. Caccetta, C.L. Hallam

and R. O’Dowd, Optimal Submarine
Transit Paths Through Sonar Fields,
Department of Mathematics and
Statistics, Curtin University of
Technology, Research Report, 2000.

[2] W. Matthew Carlyle, R. Kevin Wood,

Lagrangian Relaxation and
Enumeration for Solving Constrained
Shortest-Path Problems, Operations
Research Department, Naval
Postgraduate School, Monterey,
California, 2003.

[3] Michael L. Fredman, Robert Endre
Tarjan, Fibonacci Heaps and Their
Uses in Improved Network
Optimization Algorithms, Journal of
the Association for Computing
Machinery, Vol. 34, No. 3, July 1987,
Pages 596-615.

