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Abstract 
 
A new approach to the constrained shortest 
path problem (CSPP) is applied in the 
context of submarine path planning through 
a region of sonar detectors. This uses fast, 
convergent methods to find the optimal 
Lagrange multiplier and Dijkstra’s algorithm 
to find initial solutions. On a test set of 120 
cases, the resulting paths are almost always 
within 3% of optimal, with solution times 
under 1 second on a 2.4 GHz desktop 
computer. Given the performance of this 
method on problems with over 6400 nodes, 
extension to much larger problem sizes 
appears feasible. 
 
Introduction 
 
The task of planning a submarine path 
through a field of sonar detectors has 
strategic importance in marine defence. This 
is a difficult problem for many reasons: the 
constrained shortest path problem (CSPP) is 
known to be NP-complete; results reported 
to date tend to involve relatively small 
networks, up to 1000 nodes (to adequately 
model ocean conditions requires much 
larger networks); and computation time is 
critical, especially in tactical situations. 
 
Of particular importance, then, is the tradeoff 
between computation time and optimality. 
The desired goal is to find near optimal 
solutions with minimal computation time. We 
are primarily concerned with very large 
networks, of at least 6400 nodes, which 
allow us to model a square transit field with 
an 80 km side. This gives a resolution of 1.0 
km per edge. 
 
This paper explores the application of 
Lagrangian relaxation to the submarine 
transit problem in order to evaluate how well 
it can produce near optimal results on large 
networks in minimal time.   
 
 

 
Problem Definition 
 
The field of traversal is represented as a 
square array of nodes, with horizontal, 
vertical and diagonal arcs between adjacent 
nodes.  The vehicle is assumed to travel 
from the origin (0,0) in the lower left to (N, N) 
in the upper right hand corner. Each sonar 
detector is a point in the field, with the 
probability of detection at each node in the 
NxN array based on its distance from the 
detector. We consider two possible vehicle 
speeds, 8 and 14 km/h. The detection 
probability as a function of distance is given 
in Figure 1.  Notice that the probability is very 
high at the origin then generally drops off 
with distance. Note the second peak at about 
64 km which may be a feature of underwater 
reflection and resonance. 
 
A path consists of a list of adjacent nodes 
from start to finish. There is no cost 
associated with changing speed from one 
node to the next.  
 
Several simplifying assumptions are made 
including: 
• The detectors are stationary 
• The vehicle depth is not important 
• There are no islands or other 

obstructions to travel or to signals 
• Ocean currents, which affect speed, are 

ignored 
• Vehicle propulsion issues (battery 

charge and fuel) are not considered 
• The vehicle may only travel at one of 2 

speeds along each edge 
• All detectors share the same detector 

function. 
 
The transit field is modelled as a square 
array of nodes in which every pair of 
adjacent nodes is connected by 4 edges for 
both speeds in both directions. This includes 
diagonal edges as well as horizontal and 
vertical ones. An array 80km square 
contains 6561 nodes and 103,040 edges. 
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Each edge has a cost, which is the 
probability of detection (calculated from the 
given detection ans sensor location 
patterns), and a transit time.  The only 
constraint is an upper bound on the transit 
time. The optimisation problem is formulated 
as minimising the cost function within the 
given transit time constraint. 
 
For test purposes we use a reference set of 
30 detector patterns, each containing 4 
detectors. Each of the 30 problem sets has 
the same lower bound on the time constraint 
(11.43 hours) and an upper bound that 
varies but is around 19 hours. We use 4 
different time constraints per problem, 
chosen at 20, 40, 60 and 80 percent of the 
difference between upper and lower bounds, 
giving a total of 120 test cases. 
 
Approach 
 
The approach we describe in this paper is 
derived from the Lagrangian relaxation (LR)  
method described by Carlyle & Wood in [2]. 
For a cost function given by 
 

iixcz
i
∑=

 
 
we add the single constraint (transit time of 
each edge) into the objective function to give 
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where 
c is the edge cost 
c' is the modified edge cost, c + λF 
x is the binary variable for edge i (0 means 

edge not used) 
λ is the Lagrange muliplier 
F is the transit time of the edge 
g is the upper time bound 
z is the cost of the path using original edge 

costs c 
zL is the cost of the path using modified 

edge costs c' 
 
The two main techniques involved are: (1) 
the calculation of the Lagrange multiplier λ; 
and (2) the application of Dijkstra’s algorithm 
to find the shortest path using modified edge 
costs. We discuss the calculation of λ later. 
 
We have implemented Dijkstra’s algorithm 
with a couple of modifications. The first is the 
use of an insertion sort to manage the list of 
active nodes under consideration, as 
opposed to using a Fibonacci heap [3]. 
Secondly, we exploit the structure of the 
regular grid network to discard nodes after 
they fall behind the wave front, thus leaving 
O(n) nodes in the list. We thus achieve 
speeds comparable to F-heaps without the 
code complexity. 
 

Detector probability functions
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Figure 1 - Detection probability vs Distance (km) 
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Figure 2 – initial path cost and minCost2 vs λ 
 
 

 

 
The first pass of the method involves 
calculating the shortest path using Dijkstra’s 
algorithm on the original edge costs. The 
cost of this path is zmin. If the transit time of 
this path is within the upper time bound, we 
have an optimal solution. If not, we proceed 
with the Lagrangian relaxation (LR). 
 
LR involves finding the value of λ for which 
the cost of the shortest path using the 
modified edge costs – minCost2 – is 
maximum. As can be seen from Figure 2, 
this corresponds to the minimum value for z. 
The graph shows a plot of initial path cost 
(iCost) and the minCost2 values as a 
function of λ. The value iCost is simply the 
cost of the minCost2 path using the original 
edge costs. 
 
What we need is an efficient way to find the 
value of λmax at the peak of the minCost2 
curve. The y-intercept of this curve at λ=0 
corresponds to zmin. At the right of the curve 
we want to find the value of λ at which 
minCost2 is again equal to zmin. This we call 
λmin. Knowing these two values for λ will help 
us find λmax. 
 
First, here is the method for finding λmin.  
 
 
 
 

 
 
set λ=1.0 
do: 

set all modified edge costs c' 
using this λ 

apply Dijkstra’s algorithm to 
get zL 

extract the resulting path 
based on c' edge costs 

using this set of edges, vary 
λ downwards until zL is just 
below minCost 

set new value of λ 
until λ doesn’t change from the 
previous iteration. 
 
The calculation that uses the edge costs of 
an initial solution and varies λ can be done 
in O(n) time. This usually takes only 3 or 4 
iterations. 
 
To calculate λmax we first take the two 
endpoints of the curve where λ=0 and λ=λmin 
and get initial mincost2 solutions using these 
two values of λ. We approximate tangent 
lines to the curve at these points by 
calculating the zL value of λ=0.01 and 
λ=0.95* λmin. and then find the intersection 
point of these two lines. This gives us a first 
approximation of λmax. We then update either 
the left or right tangent line based on the 
slope at that point being negative or positive, 
and update the right or left value of λ. This is 
repeated until λ does not change. In practise 



__________________________________________________________________________________ 
4                                                                     ASOR BULLETIN, Volume 22 Number 4, December 2003                                       

this may take up to 8 iterations, but usually 4 to 6 are sufficient. 

iCost as % above optimal
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Figure 3 – initial path cost above optimal for all 120 cases 

 
 
do: 

calc the intersection point of 
the two tangent lines 

set all modified edge costs c' 
using this λ 

apply Dijkstra’s algorithm to 
get zL for that λ based on 
the slope of the tangent at 
that point, update either 
the right or left value for 
λ 

until λ does not change 
 
We thus have fast methods for calculating 
both λmin and λmax. 
 
Reference values 
 
For comparison purposes, a mixed-integer 
linear program (MILP) model was used to 
generate optimal solutions with CPlex. We 
use 3 significant figures for all edge costs 
(eg. 0.000 to 0.999) in order to allow CPlex 
to converge more easily. The code for both 
methods was written in C++ using STL 
container classes, and run on a 2.4 GHz 
desktop computer.  
 
Initial Paths 
 
If we limit our interest to initial paths for the 
80x80 problem, we get the results shown in 
Figure 3 and Table 1. Note that all but 5 of 

the 120 results are within 3% of optimal, with 
the worst case just over 6% above optimal. 
The 5 results above 3% are the result of 
only 3 detector patterns. 
 

Time 
bound 

CPlex 
cpu 

(sec) 

LR 
cpu 

(sec) 

LR % 
above 
optimal 

0.20 619.90 0.70 0.56 
0.40 527.48 0.63 0.82 
0.60 506.78 0.52 0.30 
0.80 59.54 0.40 0.12 
All 

Problems 
428.42 0.56 0.45 

Table 1 – Summary of 80x80 results 
 

The computation time for each case is about 
half a second on average, and about half of 
this time is taken in calculating the initial 
edge costs during setup. 
 
There is some variation by time bound, but 
not as great as one might expect. What is 
impressive is the fact that, except for a small 
number of cases, we get results that are 
within 3% of optimal and our CPU times are 
2 to 3 orders of magnitude smaller than 
using CPlex. 
 
Of the 120 cases, one third of initial shortest 
path solutions will be within the time bound, 
and thus be optimal. One third will be under 
time, and one third will be over the time 
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bound. However, because we have fast and 
slow edges in parallel, it is always possible 
to adjust the initial path using edge swaps to 
adjust the path time up or down to be within 
the time bound. 
 
In general, these initial paths follow very 
closely the optimal paths generated by 
CPlex. 
 
The CPU time for the LR method is 
dominated by number of times that Dijkstra’s 
algorithm is called, which on average is 
called 17 times per problem. Across problem 
sizes of n = (20, 40, 80, 120, 160) nodes per 
edge, we observe O(n3) computation time.  
 

Dijkstra's algorithm time vs Size
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 Figure 4 - Dijkstra's algorithm time vs grid 
size 

As an upper limit, consider scale of 250m 
per edge, with 321 nodes per side of an 
80km grid, we have 103,041 nodes and 
1,640,960 edges. If Dijkstra’s algorithm is 
called 17 times and takes approximately 1 
second, this gives an estimated solution 
time of about 17 seconds. In practise, a 
problem of this size is solved by the LR 
method with an average time of about 16 
seconds. This corresponds to a MILP 
problem of 1.6m decision variables and 
103,041 constraints. 
 
There is a duality gap between minCost2 
and optCost. For half of the cases, this is 
below 0.1% but for 10/120 cases it ranges 
from 2 to 8%. The gap between minCost2 
and iCost is similar, but the optimal cost may 

lie anywhere within this gap, and thus is not 
an especially good predictor of optimality. 
 
Search results 
 
The tree-based enumeration search 
described in [2] doesn’t work very well here. 
The tree-based enumeration depends on 
having good bounds for z, zL, and time (the 
side constraint). Because of the structure of 
this problem with parallel fast/slow edges, it 
is always possible to find shorter (quicker) 
paths, so the intermediate time bound is of 
no use here. This is one practical problem 
for which an optimal λ does not 
exponentially reduce the solution space, as 
claimed in [2]. 
 
Despite the long search times, a time limit of 
5 minutes was implemented and the search 
run on all 120 cases for 3 different scales. 
The results are shown in Table 2 below. 
Even for the 20x20 size, there is one case 
that takes an inordinately long time. 
 
 
Conclusions and Further Work 
 
We have applied the Lagrangian relaxation 
approach described by Carlyle & Wood to 
the submarine transit problem. We have 
developed a quick way to find the Lagrange 
multiplier for a singly constrained problem, 
and the computation times are 2 to 3 orders 
of magnitude faster than using CPlex, while 
achieving results that are usually withing 3% 
of optimal. 
 
Unfortunately, the bounded tree search of 
Carlyle & Wood is not suitable for this 
problem due to weak time bounds and the 
duality gap that exists in this problem.  
 
Further work might look at problems with 
more than one side constraint, and also 
finding a better search method to improve 
on the already good initial solutions while 
keeping the computation time small. 
 

 
 CPU times for LR search – number of cases 
Size < 1 sec 1-60 sec 1-5 min > 5 min 
20 x 20 118 1 0 1 
40 x 40 89 11 4 16 
80 x 80 72 12 1 35 

 
Table 2 – Summary of search times 
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