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Abstract  
 
Techniques for evaluating and predicting the 
performance of identification face 
recognition systems from trial data are 
presented. Using template capture and 
matching information that reflects the 
influence of situational variables, predictions 
can be made across several variables of 
interest (e.g., alarm threshold, gallery size, 
number of people viewed). This includes 
predictions for identifying individuals and 
groups as well as the number of false 
alarms for both enrolees and non-enrolees. 
The function relating the probability of 
identification and gallery size is dependent 
on alarm threshold such that changes in 
threshold exert a greater effect on this 
probability for smaller gallery sizes.  

Keywords:  Face recognition, Performance 
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Introduction 
 
Of all the biometric technologies, face 
recognition (FR) systems offer the promise 
of a method of identification that is minimally 
intrusive (Blackburn et al. 2003, Wayman 
1997a, 1997b). However, rigorous testing 
and evaluation of such systems in 
operational environments is required to 
determine their real-world effectiveness.  
 
Traditionally, face recognition systems have 
been evaluated in at least one of three ways 
(Phillips et al. 2000a, Bone et al. 2001). The 
first is a technology evaluation, which 
involves investigating a system’s 
performance on a standardised database of 
images (NIST 2002, Phillips et al. 2000b, 
Rizvi et al. 1998). The second method is the 
scenario evaluation (Bone and Blackburn 
2002; Holmes et al. 1991). This involves 
testing the entire biometric system in a 

prototype scenario that is similar to the 
actual operational setting. The third method 
is conventionally known as an operational 
evaluation, where the system is set up in the 
operational environment for a period of time 
and its performance recorded.  
 
However, these techniques are limited in 
their usefulness for predicting real world 
performance. On one hand, the technology 
evaluation fails to incorporate the influence 
of real world variables and the simple 
probabilities conventionally produced using 
this approach do not directly relate to 
system output, i.e., the probabilities of 
correctly or incorrectly identifying a person in 
an operational scenario. On the other hand, 
the scenario and operational evaluations 
only provide descriptive statistics on system 
performance and do not allow predictions to 
be made across changes in important 
system parameters and environmental 
variables. This paper outlines new 
techniques for evaluating biometric systems 
that incorporate both the influence of 
operational variables from the operational 
evaluation and the statistical predictability of 
the technology evaluation. 
 
The data collection methodology required for 
these statistical techniques is outlined in 
Sunde et al. (2003). Briefly, it involves two 
sets of controlled trials investigating face 
capture and face matching with both known 
and unknown viewed persons. The resulting 
data consists of: 
 
1) Face capture probabilities – the 
proportion of faces captured at least once by 
the system in each area / camera 
combination. 
2) Gallery images – the sets of face 
images of known persons of the format likely 
to be used in the system’s gallery (e.g., id 
photos). 
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3) Captured images – the sets of face 
images captured by the system consisting of 
images of the same people from 2) taken 
from the face capture trials consisting of at 
least one image of each person from each 
operational area / camera combination.  
 
Note that by using face captures and face 
capture probabilities from actual operational 
trials, the effects of situated variables such 
as lighting conditions, movement and pose 
will be reflected in the statistical predictions 
(Sunde et al. 2003). 
 
Preliminary data analysis 
 
The face matching algorithm in the biometric 
system is used to make all the pairwise 
comparisons within a set of images 
consisting of both Gallery and Captured 
images. In systems where score 
normalisation occurs (i.e., the matching 
process is adjusted so as to maximise inter-
individual differences within the gallery), 
multiple comparisons involving dummy 
images may need to be performed to 
acquire these values. The output of these 
comparisons is a similarity matrix, i.e., all the 
pairwise comparisons in the set, where the 
dependent variable is the final similarity 
measure used by the system to determine 
whether an alarm is generated. To 
demonstrate the concepts in this paper, an 
artificial data set has been generated where 
the similarity measure has a range of 0 
through 100 where 100 indicates a perfect 
match. 
 
Depending on the number of different types 
of photos included in the original gallery, 
several analyses can be performed using 
the data from subsets of the matrix. Each 
analysis involves comparing captured 
images from one operational area with one 
type of gallery photo. The statistics 
produced by the analyses can be used to 
compare different combinations of area and 
image types as well as to identify problems 
in specific areas or photo sets (McLindin et 
al. 2003). 
 
For each analysis, all the similarity 
measures between two different images of 
the same person (e.g., passport and live 
capture) constitute a “same person” 
distribution while all the similarity measures 
between the same two image types of 
different people constitute a “different 
person” distribution. Ideally, the probability 
density curves for these two distributions 

should be well separated - the more they 
overlap, the greater the trade-off between 
match and false match probabilities at 
different thresholds.  
 
One measure of the separability of these 
two distributions derived from the signal 
detection theory literature, and used in the 
evaluation of biometric systems, is d′ 
(Daugman and Williams 1996, Tanner and 
Swets 1954, Bolle et al. 2000).  This is given 
by: 
 

σ
μμ 21' −

=d , 

 
where μ1 and μ2 are the means of the “same 
person” and “different person” distributions 
respectively and σ is the shared standard 
deviation of these distributions. Here d′  is a 
measure of the separability of two equivalent 
normal distributions (in this case the “same 
person” and “different person” distributions) 
and may be considered a measure of 
robustness of the matching system. The 
parameter d′ assumes that the “same” and 
“different” distributions are normally 
distributed.  
 
It is not uncommon for the variability of the 
“same person” distribution to be less than 
that of the “different person” distribution. In 
cases where the distributions are normal but 
with unequal variance, d1/2 should be used 
(Green and Swets 1966, Swets 1964). This 
is given by: 
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where σ1  and σ2  are the standard 
deviations of the “same” and “different 
person” distributions respectively. A 
comparison of the magnitude of d′ and d1/2 in 
different environment and camera 
combinations may be useful in determining 
relative performance advantages. However, 
their use is limited in biometric evaluation 
because they are descriptive in nature, their 
assumptions about the underlying 
distributions are often unwarranted and 
because of the dimensionality of these 
measures. 
 

(1)

(2)
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A more detailed analysis requires 
consideration of basic match probabilities. 
These can be calculated from the two 
probability density curves for “same person” 
and “different person” distributions. Each 
curve is integrated from the lower bound of 
threshold values (in this case 0) to the upper 
bound (in this case 100).  For the “same 
person” distribution this provides the 
probability of false nonmatch (Pfnm(τ)), i.e., 
the probability that the score between a 
template of an individual and an image of 
themselves enrolled in the gallery will be 
below the alarm threshold (τ). The 
complement of this probability (i.e., 1- 
Pfnm(τ)) provides the probability of true match 
(Ptm(τ)). This is the probability that the score 
between a template of an individual and an 
image of themselves enrolled in the gallery 
will be above the alarm threshold.  
 
Integrating the “different person” density 
function in the same manner provides the 
probability of true nonmatch (Ptnm(τ)), i.e., 
the probability that the score between a 
template of an individual and an image of a 
different person enrolled in the gallery will be 
below τ. The complement of this probability 
is the probability of false match (Pfm(τ)). This 
is the probability that the score between a 
template of an individual and an image of a 

different person enrolled in the gallery will be 
above the threshold.   
 
The effective receiver operating 
characteristic (EROC) curve 
 
One method of depicting these simple match 
probabilities is the Receiver Operating 
Characteristic (ROC) curve as displayed in 
Figure 1. The ROC curve plots the Ptm(τ) on 
the ordinate against Pfm(τ) on the abscissa. 
The point at which Ptm(τ) and Pfm(τ) are 
equal, known as the Equal Error Rate 
(EER), is often used to judge system 
performance. Generally speaking, the lower 
this value, the better the system’s 
performance. However, this value is only 
one indicator of performance and an 
evaluation of the graph as a whole, 
especially the function near the ordinate, is 
necessary for a proper appraisal of system 
performance. A similar curve also used in 
the assessment of such systems is the 
Detection Error Tradeoff (DET) curve which 
plots Pfm(τ) and Pfnm(τ) on log scale axes to 
highlight performance at higher thresholds. 
 
An additional form of graphical display that 
combines the conventional ROC curve with 
the face capture probability, Pc, is proposed. 
Information from face capture and face 
match information, where both are linked to 
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Fig.  1: The Receiver Operating Characteristic (ROC) Curve. 
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a specific operational scenario, are 
combined for a more complete overview of 
system performance. This new graph, called 
an Effective Receiver Operating 
Characteristic (EROC) curve, is shown in 
Figure 2.  
 
The probabilities of interest are joint 
probabilities – under the assumption of 
independence, these are match probabilities 
multiplied by the probability of capture. Note 
that we have assumed independence where 
the relationship between these probabilities 
is unknown. This assumption, and the other 
assumptions of independence in this paper, 
is worthy of empirical investigation. The 
probability of effective true match (Petm(τ)) is 
the probability that an individual’s template 
will be captured and that the score between 
this template and an image of themselves 
enrolled in the gallery will be above the 
alarm threshold. The probability of effective 
false match (Pefm(τ)) is the probability that an 
individual’s template will be captured and 
that the score between this template and an 
image of a different person enrolled in the 
gallery will be above the threshold. It 
therefore better captures system 
performance by incorporating the ability of 
the system not only to accurately compare 
images of people to the gallery but also to 
capture them in the first place.  
 
The EROC curve is bounded by a capture 
window (the dotted grey line). This window 
reflects the ability of the system to capture a 
face – the smaller the window, the worse the 
face capture performance. More specifically, 
it signifies the upper and lower bounds of 

overall system performance as defined by 
Pc. The effective error rate (EEER) is the 
point where Petm(τ) and Pefm(τ) are equal. As 
with the EER, the lower this value, the better 
the system’s performance is in general 
terms. If the system displays the unlikely 
face capture probability of 1 then the EROC 
and ROC curves are equivalent. For any Pc 
less than 1 the two curves will differ and the 
EEER will be greater than the EER. 
Importantly, at any operational threshold 
where the probability of false alarm is 
effectively zero, the probability of effective 
true match will be lower than the probability 
of true match predicted by the conventional 
ROC curve. In other words, using the 
conventional ROC curve can often provide 
an overly optimistic view of system 
performance of an operational biometric in 
an identification application. 
 
In summary, the EROC curve allows a quick 
visual assessment of system performance 
that takes into account match and capture 
performance. Performance can be analysed 
in a format similar to the ROC curve and in a 
manner that distinguishes between the 
contributions of capture rate (i.e., the size of 
the window) and effectiveness of the 
matching algorithm (i.e., the shape of the 
curve). Breaking performance down into 
separate components allows the researcher 
to determine why a system is performing 
poorly (i.e., whether it is having difficulty 
capturing faces or matching them) and also 
to better compare system performance 
between different scenarios. The EROC is 
particularly useful when the number of 
conditions to be examined is large.  
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Fig.  2: The Effective Receiver Operating Characteristic (EROC) Curve (Pc = 0.8). 
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The EROC curve also provides a simple 
decision heuristic for classifying poor 
performance, i.e., in cases where an EEER 
cannot be calculated, system performance is 
unacceptable. If the capture window does 
not intersect the equal error rate line then 
system performance is so poor that even at 
the most liberal threshold the system does 
not have a one in two chance of an effective 
true match. In fact, with a Petm(τ) of 0.5 the 
probability of correctly identifying a person of 
interest, which is the more useful operational 
metric, is less than 0.5 unless they are the 
sole enrolee (for further details see the 
section on Persons enrolled). 
 
Higher level measures 
 
While the techniques and measures 
mentioned above are useful for determining 
relative performance between competing FR 
systems and different operational area / 
camera combinations they do not provide 
predictions for overall system performance. 
This section presents methods for providing 
predictions of higher-level system 
performance based on the probabilities 
outlined above. These higher-level 
measures (e.g., the number of true and false 
alarms) are more useful in operational terms 
than the simpler, and often misunderstood, 
probabilities (i.e., Ptm(τ) and Pfm(τ)) that are 
normally quoted in the biometrics literature. 
This will involve discussing the formal 
relationship between these simpler 
probability estimates and higher-level 
measures as well as determining confidence 
bounds for these estimates. This also 
involves differentiating between equations 
for probabilities associated with people 
enrolled in the gallery (signified by r) and 
those not enrolled (signified by ¬r).  
 
Persons not enrolled 
 
As demonstrated in the EROC curve, Pefm(τ) 
is the probability that an individual’s 
template will be captured and that the score 
between this template and an image of 
another person enrolled in the gallery will be 
above the alarm threshold. This is simply: 
 

)()( ττ fmcefm PPP ∗= . 
 
However, galleries normally consist of more 
than one person. For a person not enrolled 
in the gallery, a false alarm is generated 
whenever any of the comparisons the 

algorithm makes between the face capture 
of an individual and the face images enrolled 
in the gallery is above the threshold. In other 
words, at least one of the comparisons with 
all of the images in the gallery needs to be 
above the threshold for a false alarm to be 
generated. Therefore, extending the work of 
Wayman (1999), the probability of an 
effective false alarm for a non-enrolled 
individual compared to a gallery of more 
than one person is:   
 

))(1()( ττ gsn
tnmcref PPP −∗=¬ , 

 
 

where ngs is the gallery size.  
 
The number of false alarms (fa′¬r(τ)) 
associated with non-enrolled persons 
passing by the system can therefore be 
estimated by the equation 
 

r
n

tnmcr nPPfa gs
¬¬ ∗−∗= ))(1()(' ττ , 

 
where n¬r is the number of non-enrolled 
persons viewed by the system in the 
operational environment.  
 
Figure 3 demonstrates the theoretical 
relationship between the number of people 
viewed, the number of people in the gallery 
and the number of false alarms in a scenario 
where no enrolled persons are viewed by 
the system. This depicts predictions of false 
alarm rate for gallery sizes up to 100 and 
numbers of population not enrolled up to 
1000 with a face capture probability of 80% 
and with a probability of false match of 0.01.  
 
As can be seen in the graph, when the size 
of the gallery and the number of people 
viewed by the system is large the number of 
estimated false alarms may be 
unreasonable, i.e., potentially exceeding the 
number which can be dealt with within an 
operational setting. One way of determining 
this is to calculate the estimated number of 
false alarms based on the number of people 
viewed per hour and then compare this with 
the number of responses to such alarms that 
can be handled by an operator, and any 
other response systems, in this time (see 
Kaine 2003). Obviously, in most settings the 
number of people viewed by the system is 
fixed such that minimising the false alarm 
rate can only be achieved by lowering the 
threshold or keeping the gallery as small as 
possible. 

(3)

(4)

(5)
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Persons enrolled 
 
The relationship between probabilities in the 
ROC and EROC curves and the probabilities 
of true or false alarms (i.e., an alarm given 
by the system where either the correct 
gallery image is highest ranked or an 
incorrect gallery image is highest ranked) is 
more complicated. For a person enrolled the 
probability of an effective true match is given 
by: 
 

)()( ττ tmcetm PPP ∗= . 
  
This is the probability that the comparison 
score between an individual’s captured 
template and a template of themselves 
already enrolled in the gallery is above the 
match threshold. This is an appropriate 
indication of performance in cases where, 
whenever an alarm is generated, an 
operator checks all potential matches that 
are above the threshold rather than simply 
the highest match.  
 
Where this is not the case, this approach 
overestimates the probability of a true alarm. 
In most applications, a true alarm is the case 

where not only is the match score between 
an individual and their template above the 
threshold but where no false matches 
generate a higher-ranked similarity score. In 
other words, the probability of a true alarm 

for an enrolled individual is the probability 
that the comparison of their captured face to 
their image in the gallery is above the 
threshold and that the similarity score it 
produces is higher than that produced by all 
the other comparisons between the captured 
image and images of other people in the 
gallery. In what follows three methods are 
presented to estimate true alarms. 
 
The first of these methods gives upper and 
lower bounds on the estimated probability of 
true alarms. The upper bound represents 
the best case scenario where, whenever a 
true match is above the threshold, all of the 
false matches are below the similarity score 
of the true match. This upper bound is given 
simply by Ptm(τ). The lower bound is the 
worst case scenario where, whenever at 
least one false match occurs, at least one of 
these false match similarity values is above 
the true match value. This lower bound is 
Ptm(τ) – (1– (1– Pfm(τ))ngs-1) whenever 1– (1– 
Pfm(τ))ngs-1) is less than or equal to Ptm(τ) and 
zero otherwise. However, these bounds are 
only a crude method for estimating true 
alarms. For large gallery sizes, relatively 
high false match probabilities (for example, 
at low thresholds or for a poorly performing 

system), or both, the lower bound is zero 
and therefore uninformative. In addition, the 
upper bound is unaffected by changes in 
gallery size. Therefore, in practice the 
usefulness of these suprema is limited.  
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(6)
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The second of these methods gives a 
conservative estimate using probabilities 
derived directly from the “same” and 
“different person” distributions (for a similar 
treatment see Wayman, 1997c). Using this 
approach, Petar(τ) (the probability of an 
effective true alarm for an enrolee) can be 
given by the joint probability that a) the face 
is captured by the system, b) the correct 
image comparison similarity score is above 
the threshold and that c) none of the 
incorrect image comparison similarity scores 
are above the threshold under the 
assumption that a), b) and c) are 
independent. This is given by 
 

)()()( 1 τττ −∗∗= gsn
tnmtmcetar PPPP . 

 
However, this approach to estimating true 
alarm probability omits a valid case of a true 
alarm where at least one of the incorrect 
image comparison scores is above the 
threshold but where any such scores are 
lower than the correct image comparison 
score. This method is conservative because 
it underestimates the probability of a true 
alarm in an operational environment. In 
some cases, the technique may be 
appropriate given that, especially at the 
higher thresholds normally used for 
surveillance applications, the chances of an 
incorrect comparison score being above the 
threshold but lower than the correct 
comparison score are relatively small when 
the gallery size is kept to a minimum.  
 
This technique can also be used to 
determine the probability of a false alarm 
based on enrolled persons. As with true 
alarms, this technique underestimates the 
probability of interest (i.e., false alarms) 
associated with enrolled persons – it omits 
the valid case of a false alarm where the 
correct image comparison score is above 
the threshold yet below the highest ranked 
comparison score of the other gallery 
images. Assuming independence, the false 
alarm probability for enrolled persons is: 
 

)(
)))(1(1()( 1

τ

ττ

fnm

n
fmcfar

P
PPP gs

∗

−−∗= −

 

 
The third technique for estimating the 
probability of a true alarm is the most 
complicated but also the most accurate. As 
mentioned at the start of this section, the 
probability of a true alarm can be expressed 

as the probability that (a) the true match 
value is above the threshold and (b) that all 
of the scores from comparisons between the 
captured face image and the other gallery 
images are below the true match value. This 
can be expressed as the intersection of two 
components. The first component is the 
probability that the similarity score between 
a face captured in the live environment and 
a gallery image of the person is above the 
match threshold, i.e., Ptm(τ). 
 
The second component is the probability 
that a score between an individual’s image 
in the live environment and their gallery 
image is higher than any of the scores 
between their image in the live environment 
and the gallery images of any other 
individual. Put simply, it is the probability that 
for any given face image from the live 
environment, a “same” score will be higher 
than all “different” scores. This can be 
expressed as the threshold independent 
probability 1−

>
gsn
dsP  where ngs denotes the size 

of the gallery. Assuming independence, the 
probability of an effective true alarm is the 
intersection of these two components and is 
given simply by 1)( −

>∗ gsn
dstm PP τ . Assuming 

independence between these components 
and the likelihood of face capture, the 
probability of an effective true alarm with a 
gallery of two or more images is 
 

1)()( −
>∗∗= gsn

dstmcetar PPPP ττ . 
 
 
The probability of a false non-alarm needs 
similar treatment. A false non-alarm can 
occur when the face image is and is not 
captured. In the former case, a person is 
viewed by the system, their face image is 
captured but an alarm is not generated by 
either a comparison with the correct gallery 
image or any of the incorrect images. In 
other words, it is the joint probability that the 
score between the captured image and the 
correct gallery image is below the threshold 
and that all of the scores between the 
captured image and all of the other gallery 
images are also below the threshold. In the 
latter case, the person is viewed by the 
system but the face image is not captured. 
In both cases the system does not generate 
an alarm. Assuming independence, the 
equation for an effective false non-alarm 
with a gallery of two or more images is 
 

(7)

(8)

(9)
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As with the probability of a true alarm, the 
probability of a false alarm for an enrolee 
can be broken down into two components. 
Assuming independence, it is the probability 
(a) that at least one of the scores between 
the captured image and the gallery images 
of other people is above τ multiplied by the 
probability (b) that the score associated with 
the correct gallery image is less than the 
highest of the scores associated with the 
false images. The first component is the 
complement of the probability that none of 
the scores between the captured image and 
the gallery images of other people is above 
the match threshold. For a gallery of two or 
more images this is ))(1( 1 τ−− gsn

tnmP . 
 
The second component is the probability 
that a “same person” score is lower than at 
least one “different person” score. This is the 
complement of the probability that the “same 
person” score is above all “different person” 
scores which can be expressed as the 
threshold independent probability 11 −

>− gsn
dsP . 

Assuming independence, the probability of 
an effective false alarm for an enrolee is 
therefore: 
 

( )1

1

1

))(1()(
−

>

−

−∗

−∗=
gs

gs

n
ds

n
tnmcefae

P

PPP ττ
 

 

Effect of gallery size on true alarm 
probabilities 
 
This equation for estimating effective true 
alarms for enrolees allows us to answer a 
question frequently asked in the analysis of 
identification biometric systems: how does 
varying the gallery size impact on the 
probability of a true alarm? Figure 4 shows 
the theoretical influence of gallery size on 
the probability of true match across three 
different thresholds from the simulated data. 
Probability of capture is 0.8 and the 
thresholds of 60, 65 and 70 are associated 
with Ptm(τ)’s of 0.83, 0.46 and 0.12 
respectively. Generally speaking, the 
function relating true alarms to gallery size is 
dependent on threshold. More specifically, 
for any reasonable threshold, the higher the 

threshold the less sensitive the probability of 
true alarm is to increasing gallery size.  

Detection of a group 

Another important operational measure is 
the ability of the system to detect the 
activities of a group. For example, consider 
a group of interest where images of each 
member are enrolled in the gallery. Let us 
also assume that to detect a group we need 
to detect one or more of its members. In 
other words, when at least one of the 
members is detected we have been alerted 
to the possible presence of the entire group. 
Assuming independence, the probability that 
at least one member of the group will be 
detected (i.e., an effective true alarm for at 
least one person in the group) is given by 
 

gn
tarcetag PPP )))((1(1)( ττ ∗−−= , 

 

where ng is the number of people in the 
group and Ptar(τ) is the probability that an 
enrolled person will generate a true match 
alarm. Figure 5 depicts probabilities for 
detecting groups of people (1 – 20) for three 
different thresholds – 60, 65 and 70 
(producing Ptm(τ)’s of 0.88, 0.55 and 0.17 
respectively) – a capture rate of 0.8 and a 
gallery size of 100 members.  
 
As can be seen in Figure 5, even when the 
performance of the system for individuals is 
relatively meagre, the cumulative effects for 
the detection of groups may result in 
acceptable overall performance. In other 
words, while the conventional analysis of 
system performance (i.e., Ptm(τ) and Pfm(τ)) 
may be pessimistic, the actual system 
performance in operation may be acceptable 
with respect to the detection of groups. 
 

Confidence Intervals 
 
In addition to the point estimates depicted in 
the ROC and EROC curves, 95% 
confidence intervals can also be provided for 
Ptm(τ) and Pfm(τ) (Crow et al. 1960, Wayman 
1998). We can then be 95% confident that 
the unknown population parameter (in this 
case the match probabilities) is within these 
bounds based on the samples we have 
drawn. For Ptm(τ)  from the “same person” 
distribution, the 95% confidence interval at 
any given threshold is given by: 
 
Upper bound 

(10)

(11)

(12)
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where r = the number of “same person” 

scores above the threshold and 
n = the total number of “same 
person” scores, 
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For the “different person” distribution, a 
different approach is required because the 
cross-comparisons are no longer 

independent.   From   Wayman   (1998),  the  
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threshold are: 
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where r(h,k) is the similarity score between 
person h and person k in the sample. 
 
In general, confidence bounds are rarely 
reported in biometric system evaluations. 
One reason is that the confidence bounds 

relate only to error in sampling from the test 
population in the test environment and both 
the participants and the environment used in 
testing often differ from the operational 
scenario (Wayman 1998). In this evaluation 
methodology we have minimised 
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Fig.  4: Probability of an effective true alarm for three different thresholds (55,60 and 
65) and for gallery sizes 1 through 200.
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environmental differences between testing 
and deployment (Sunde et al. 2003). 
However, when the test participants in this 
methodology are not representative of the 
population that ultimately will be viewed by 
the system such confidence bounds, and in 
fact the point estimates themselves, may be 
of limited benefit.  
 

Conclusion 
 
The new techniques presented for 
evaluating and predicting the performance of 
an identification face recognition system in 
an operational setting have combined 
elements of signal detection theory and 
basic probability theory. They allow superior 
predictions of performance over 
conventional biometric system evaluations 
because they a) reflect the influence of 
situational variables such as lighting, pose 
and movement and b) allow for variation in a 
larger set of parameters such as threshold, 
gallery size, target type (enrolee vs. non-
enrolee, group vs. individual) and the 
number of people viewed by the system. In 
addition, the EROC curve that has been 
presented allows a visual assessment of 
system performance both in terms of face 
capture and face match in an operational 
setting. This technique may be of assistance 
in quickly determining optimal areas and / or 

cameras for implementing the biometric 

system out of a number of possible 
alternatives as well as identifying causes of 
poor system performance. 
 
In addition, there are two significant practical 
implications from this work. Firstly, the ability 
to detect a group, which is a useful 
operational measure in certain contexts, 
may be adequate even when the ability to 
detect an individual is poor. Secondly, 
gallery size has a significant impact on 
system performance. For effective false 
alarms, the effect of increasing gallery size 
can paint a pessimistic view of system 
performance for the parameters used in 
many operational settings. For effective true 
alarms, the impact of increasing gallery size 
is dependent on the threshold setting such 
that the lower the threshold, the more 
sensitive the probability is to increasing 
gallery size. 
 
The techniques provided in this paper are 
provided with the following caveats: 
 

1. This approach does not specifically 
address variations in system 
performance due to multiple 
captures of a person in an 
environment or multiple enrolment 
images of a person. This would 
require separation of the variance 
between different people from the 

variance between images of the 
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same person such as in an analysis 
of variance, multivariate analysis of 
variance or mixed-effects models.  

2. It assumes that the system 
compares the template from the 
environment to every gallery image 
in a single pass. In systems where 
multiple comparison stages are 
used in the matching process the 
analysis will need to be more 
sophisticated. 

3. For valid results, this technique 
requires a relatively large database 
of images and participants for both 
face capture and face matching 
trials. Practically speaking, the 
requirement of a large number of 
participants is both time consuming 
and costly. However the results are 
more appropriate than those 
proposed in alternative evaluation 
methodologies and any such costs 
may be insignificant in comparison 
to those caused by the inappropriate 
implementation of a face recognition 
system in an operational setting. 

4. The participants in the trials need to 
be representative of the population 
that will actually be viewed by the 
system. Where this is not the case, 
the predictive power of these 
techniques is limited. 

5. The assumptions of independence 
need to be examined. For example, 
the relationship between face 
capture and face matching should 
be empirically investigated. Given 
the possible interaction between 
influencing factors in an operational 
environment, it should be noted that 
any correlations may be linked not 
only to the system itself but the 
environment and sample upon 
which the testing was conducted so 
that any conclusions may be limited 
in their generality. 

6. This approach has neglected an 
important aspect of the system 
performance, namely human-
machine interaction. The final link in 
the decision chain is the operator 
because ultimate judgment on the 
correctness of an alarm is a human 
one. This may involve an operator 
viewing the images presented by 
the system, face-to-face recognition 
and trust in the system’s output (see 
Vast and Butavicius 2005 and Lee, 
Vast and  Butavicius, in press). It 
may also involve the activity of 

further response systems (Kaine 
2003). Therefore, the evaluation 
methodology presented in this paper 
only investigates one part of the 
complete operational system 
(Sunde et al. 2003). 
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