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Abstract 
 
It is proposed that a possible explanation of 
interaction between independent variables in 
a factorial experiment is that (a) quantities 
derived from the independent variables 
separately add together, but (b) a curvilinear 
relationship intervenes between their total 
and the dependent variable observed. 
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Introduction 
 
Factorial experimentation involves 
manipulating two (or more) x's, and 
observing y at all combinations of the values 
of x1 and x2. If the effect on y of x1 depends 
upon what x2 is, there is said to be an 
interaction between the x's. An example 
from the broad field of management science 
is in Tan et al. (2003). The dependent 
variable was predisposition to report bad 
news about a project going wrong (as 
measured with a questionnaire). The 
independent variables were national culture 
(two levels, individualism (U.S.) versus 
collectivism (Singapore)) and information 
asymmetry (also two levels, whether or not 
bad news could be hidden). The following 
data are from Table V of Tan et al. (2003) 
(and refer to the "organizational climate 
being conducive to reporting bad news" 
situation).  
                  Hiding of bad news 
                (Sustainable or not)  
                  Sust.    Not sust. 
National culture  
  Individualism     5.20      5.41 
  Collectivism      4.53      5.62 
 
There is interaction: the difference of 0.67 in 
the first column is different from the 
difference of -0.21 in the second column. 
(The question of whether interaction is 
"statistically significant" is not of interest in 
the present paper.)  
 

As readers may know, there is a vast 
literature on statistical testing in factorial 
experiments. But there is surprisingly little 
about the explanation we might give when 
interaction is found. In Tan et al. (2003), for 
example, it is said that "collectivism 
appeared to amplify the impact of 
information asymmetry". I suggest this is a 
description, not an explanation or a theory. 
The purpose of the present note is to point 
out that a possible explanation of interaction 
is that (a) the x's add together, but (b) a 
curvilinear relationship intervenes between 
the total of the x's and the dependent 
variable y observed. A curvilinear 
relationship should not be regarded as 
surprising: for some x's, there is an optimum 
value, and both higher and lower values lead 
to y being worse (see for example, 
Patrashkova-Volzdoska et al., 2003).  
 
 
Theory and Examples 
 
In practice, one has data and wants to find a 
model. However, it will be easier to 
appreciate the proposed explanation of 
interaction by starting from a model and 
working out what the data will look like. In 
the following example, round numbers are 
used, so the calculations will be easy to 
follow. Consider the curvilinear relationship y 
= -x2 + 1.  

• If x is -0.9, say, y is 0.19. If x 
increases by 0.8, to -0.1, y is now 
0.99, a change of +0.80.  

• If x is -0.3, say, y is 0.91. A change 
of 0.8 in x brings it to 0.5, so y is 
0.75, a change of -0.16, which is not 
the same as +0.80.  

Now, suppose those four values of y were 
observed in a factorial experiment in which 
two factors (independent variables), x1 and 
x2, were manipulated: 
                      x

2 

              Level 1   Level 2 
x
1
: Level 1     0.19      0.99 

    Level 2     0.91      0.75 
 
Having constructed the data in that way, it is 
obvious that the following model will fit the 
data. Let α be -0.9 or -0.3, according to 
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whether x1 is at level 1 or level 2. Let β be 
0.0 or 0.8, according to whether x2 is at level 
1 or level 2. Add the two contributions 
together to get the total for a given set of 
experimental conditions, x = α + β.  
                            β        
                       0.0    0.8 
 
α:      -0.9          -0.9   -0.1 
        -0.3          -0.3    0.5 
 
Then y = -x2 + 1. 
 
Thus the basic model is addition of 
contributions from x1 and x2, as with the 
main effects model in analysis of variance. 
The simple pattern is then obscured by the 
intervention of the curvilinear dependence of 
y on total x. For more details, see 
Hutchinson (2004). 
 
As to the data from Tan et al. (2003), 
suppose α is 0 or -1, and β is 0 or 3.   
                       β        
                 0          3 
 
α:    0          0          3 
     -1         -1          2 
 
Further, let y = -0.13x2 + 0.47x + 5.2. The y's 
are now very close to the observed values:  
                5.20       5.44               

In case 1, the model proposed may be 
useful if the main effects model fails to be a 
good description of the data. At present, the 
only choices available are the full model with 
a parameter for every cell of the table, i.e., 
RC parameters (R = number of levels of x

                4.60       5.62 
 
On their own, I do not take the parameter 
values very seriously. It is possible that 
qualitatively different values would give 
about as good a fit to the data. What is 
needed is a suggestion of a suitable variable 
that is the real driver of y. What has been 
found is that the relationship is inverted-U in 
form, the contribution of individualism 
relative to collectivism is positive, and the 
contribution of the hiding of bad news not 
being sustainable relative to this being 
sustainable is positive.  
 
Why should anyone care about this? In 
response, I think there are two main 
contexts for factorial experiments. 

1. It may be hoped that interactions are 
not found, and therefore the whole 
pattern of means can be explained 
by main effects only. This will be 
very useful if the table of data is a 
large one. For example, if there are 
6 levels of one factor and four levels 
of the other, there are 24 means. 
But if main effects alone are a good 
description of the data, only 9 
numbers are needed (grand mean, 
effects of x1, and effects of x2). 

2. Alternatively, there may be no great 
interest in the main effects (e.g., 
they be well known to exist), but it 
may rather be hoped that 
interactions are discovered, 
because they are something new 
and beyond the existing knowledge. 

 

1, 
C = number of levels of x2), and the main 
effects model having R+C-1 parameters. An 
extra parameter reflecting the curvature of 
the dependence of y on total x may give a fit 
that is appreciably better than the main 
effects model, with parameters that are 
appreciably fewer in number than the full 
model. In case 2, the new model is itself a 
step towards a theory. And it makes clear 
what questions we need to answer next. 
Why are the values of α as they are? Why 
are the values of β as they are? What is an 
appropriate name for total x? Why is the 
nonlinear function as it is? (To expect 
quantitative answers will usually be 
unreasonable. But a qualitative explanation 
may be possible: for example, it might be 
reasonable to expect a particular ordering of 
the levels of x1 in respect of their 
contributions to arousal, the same might be 
true of x2, and an inverted-U dependence of 
performance on arousal might be considered 
so frequent a finding that it does not require 
explanation.) It seems to me that these are 
much more tractable questions than 
attempting to explain interaction without any 
clue as to how this might arise. 
 
 
Mathematical and Interpretational 
Questions 
 
Additivity-plus-nonlinearity has been put 
forward here as a possible explanation for 
interaction generally, not to argue that it 
actually is the explanation for the findings in 
Tan et al. (2003), which in any case was a 
three-factor experiment, not a two-factor 
one. (The third factor was whether 
organisational culture was conducive to 
reporting bad news.) I suggest two questions 
in particular as important and to which 
readers of this journal may already be able 
to offer partial answers.  
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What is known about fitting nonlinear models 
of the type proposed? (Aspects of this 
question include the following. What 
algorithms are best? In what circumstances 
do multiple local optima occur, and in what 
circumstances do they not? Concerning the 
dependence of y on x, is some other choice 
better computationally than a quadratic? 
Concerning the quantity to be optimised, is 
some choice better computationally than the 
sum of squared differences between 
observed and predicted y’s? How can the 
global optimum be found? How do the 
answers to these questions vary with the 
size of the data table?) 
 
By what mechanisms (or via what widely-
accepted relationships) do U or inverted-U 
dependencies arise? (If we had a list, we 
could look through it and consider whether 
any of them were plausible with whatever 
variables were under consideration.) As a 
start, let me propose three. (a) Measures of 
performance having an inverted-U 
relationship to arousal. (b) The dependent 
variable is the product of an increasing 
function of x and a decreasing function of x. 
For example, output = rate of production 
multiplied by time available. If x both 
increases the rate of production and also 
consumes time, dependence of output on x 
is likely to be inverted-U in shape. (c) There 
is a normal level of x, to which the system as 
a whole has adapted. If x is lower than 
normal, there is some reason why the 
system's performance is poorer. If x is 
higher than normal, there is some quite 
different reason why the system's 
performance is poorer. 
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