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Abstract  
 
There are many situations in which indicators 
of changes or anomalies in communication 
networks can be helpful, e.g. in the 
identification of faults. A dynamic 
communication network is characterised as a 
series of graphs with vertices representing IP 
addresses and edges representing 
information exchange between these entities 
weighted by packets sent. Ten graph 
distance metrics are used to create time 
series of network changes by sequentially 
comparing graphs from adjacent periods. 
These time series are individually modelled 
as univariate autoregressive moving average 
(ARMA) processes. Each time series is 
assessed on the ability of the best ARMA 
model of it to identify anomalies through 
residual thresholding. 

 
Introduction 
 

Automatic highlighting of anomalously large 
changes in communications networks can be 
of benefit, e.g. as a tip off for fault detection 
or as an indicator of a change in the structure 
or use of a network. Computer 
communications networks can be 
characterised as graphs with vertices 
representing IP addresses and edges 
representing information exchange between 
these entities weighted by packet traffic. The 
similarity between a network graph for one 
day and that for another day can be 
represented using a variety of graph distance 
measures. Sequential comparison of the 
graph for each day with those for the 
previous day or days is used to produce a 
time series of graph distances using ten 
graph distance metrics. In order to determine 
what changes are abnormal an ARMA model 
of the normal changes in each of the time 
series is built and residuals exceeding a 
threshold are defined as anomalous. 
  
This method is tested on a dataset of 102 
days of TCP/IP traffic collected from 5 
probes on an enterprise network excluding 
weekends and public holidays. The network 

administrators identified three days (22, 64 
and 89) on which they thought the network 
had changed or behaved aberrantly. Only on 
day 64 was there a suggested reason: the 
introduction of a web based personnel 
management system (WBPMS). There may 
have been other network disruptions in this 
period but none were notable enough to be 
mentioned by network administrators.  
 
If anomalies are defined as days with 
residuals of more than two standard errors 
from the best ARMA model the edit, MCS 
vertex, MCS edge, weight and weight 
common (MCS weight) distance metrics yield 
detections of WBPMS introduction with 
varying levels of false alarms. For the 
entropy and median distance metrics, 
detection occurs with a threshold just below 
two standard errors. The spectral, modality 
and diameter distance metrics do not allow 
ARMA detection of WBPMS introduction.  
 
A similar pattern is seen for detections of all 
three anomalies with spectral, modality and 
diameter distance metrics not producing any 
detections, MCS edge, MCS vertex, edit, 
median and entropy metrics able to produce 
detections with no false alarms, and weight 
and MCS weight able to detect all anomalies 
with a small number of false alarms. Of the 
three anomalies the introduction of WBPMS 
was the most difficult to detect using ARMA 
based methods. In contrast it was the most 
easily detected using a comparison 
technique based on median edit graphs. 
 
These results are promising and imply that 
high precision and recall ARMA based 
anomaly detection is possible when 
appropriate graph distance metrics are used 
to build a time series of network graph 
distances. Rigorous testing of whether a 
practical anomaly detection system can be 
constructed in this way can only be achieved 
by repeating this procedure on simulated 
time series of network graphs with anomalies 
of known type and magnitude injected into 
particular graphs. 
 



 
 

 
 
From Distance Metrics to Time Series  
 
The communications network for each period 
is characterised as a graph G = (V,E) 
containing a finite set of vertices V and 
edges E. The vertices represent the 
communications nodes such as IP 
addresses, telephone numbers, etc. and the 
edges represent communications between 
these nodes. The edges are weighted by the 
volume of traffic along them. A number of 
graph topology distance measures are used 
to quantify the differences between the graph 
representations of the communication 
network. For each of these graph topology 
distance measures a time series of changes 
is constructed by comparing the graph for a 
given period with the graph(s) from one or 
more previous periods.  
 

Edges, (u,v) ∈  E, are defined by the pair of 
vertices, e.g. u and v, that they join and are 
directed if (u,v) ∈  E is an ordered pair and 
undirected if it is not. Two vertices u,v ∈  V 
are considered to be adjacent, u → v, if there 
is an edge defined in terms of u and v. 
 
Vertices, edges and their combinations 
associated with a graph, G, are referred to as 
elements. The domain of a weight function 
can be limited to edge elements, in which 
case it is called an edge-weight, or the vertex 
elements, called a vertex-weight, or span all 
edges and vertices, referred to as a total-
weight. The weight values, wV and wE, 
assigned to elements of the graph G=(V,E, 
wV, wE) are symbolic for vertex-weights, i.e.  
wV :V → LV where LV are unique one-to-one 
labels for each v ∈  V, and numerical for 
edge-weights with the weight wE : E → +ℜ . 
All graphs have a unique one-to-one 

symbolic value for each vertex-weight and 
are thus considered to be labelled. The 
number of vertices in G=(V,E) is denoted by 
|V| and the number of edges by |E|. 
 
All distance measures used are metrics. This 
means that the distance between two graphs 
is a positive real number, i.e. d(G,H) ∈  +ℜ , 
the zero distance is equivalent to graph 
isomorphism, all distance measures are 
symmetric, i.e. d(G,H) = d(H,G), and they 
satisfy the triangle inequality, i.e. d(G,F) ≤ 
d(G,H) + d(H,F). 
 
The following graph topology distance 
measures rely on identification and 
comparison of the elements in common 
between graphs by finding maximum 
common subgraphs (Shoubridge et al., 
1999). A subgraph of G=(VG, EG, V

Gw , E
Gw ) is 

a graph S=(VS, ES, V
Sw , E

Sw ) where VS ⊆  VG 
and ES ⊆  EG ∩ (VS x VS). The vertex-weight 

V
Sw  of S is V

Gw  restricted to VS and the 

edge-weight E
Sw  of S is E

Gw  restricted to ES. 
The maximum common subgraph (MCS) F of 
G and H, F = mcs(G,H), is the common 
subgraph with the most vertices, i.e. no other 
common subgraph K of G and H exists, with 
more vertices than F. 
 
The metrics are summarised in Table (1). It 
is worth noting that while vertex weights are 
not directly used in any of the measures 
vertex labels are used in all of them in order 
to make the process of comparing graphs 
easier and more accurate. Some graph 
theoreticians would consider these to be 
vertex weights. All metrics take the value of 
zero if the two graphs compared are 

Metric Vertices 
used? 

Edges 
used? 

Vertex 
weights 
used? 

Edge 
weight
s used? 

Range  Value if 
graphs 
identical 

Weight No Yes No Yes [0,1] 0 
MCS Weight No Yes No Yes [0,1] 0 
MCS Edge No Yes No No [0,1] 0 
MCS Vertex Yes No No No [0,1] 0 
Graph Edit Yes Yes No No [0,∞) 0 
Median Edit Yes Yes No No [0,∞) 0 
Modality No Yes No Yes [0,1] 0 
Diameter Yes Yes No No [0,∞) 0 
Entropy No Yes No Yes (-1,1) 0 
Spectral No Yes No Yes [0,1] 0 

Table 1: Summary of metrics 



 
 

identical, although in the case of median edit 
distance this means that the next graph in 
the series is identical to the median graph of 
the last five graphs. While several of the 
metrics are theoretically unbounded it is 
worth noting that edit distance produces 
integer results and that only diameter 
distance produces results that are far from 
zero in this case.  
 
Weight Distance 
 
This measure of graph distance sums the 
differences in edge-weight values over all 
edges in the two graphs, normalises this by 
the larger of the sums of the edge-weight 
values within each graphs and divides by the 
total number of edges in the double 
summation. One has: 
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where ( ) ( )vuwE ,•  is the weight of the edge 
joining u and v; and d(G,H) is the distance 
between graphs G and H (Shoubridge et al., 
1999).  
 
MCS Weight Distance 
 
This measure of graph distance strongly 
resembles the weight distance measure in 
Equation (1) but considers only those edges 
that appear in the maximum common 
subgraph (MCS).  
 
MCS Edge Distance 
 
The MCS edge distance metric is calculated 
by counting the number of edges in the MCS 
of two graphs, normalising this by the 
number of edges in the larger of the two 
graphs, and subtracting the result of this from 
one. The distance will always be in the 
interval [0,1] and the closer the distance is to 
0 the more similar the graphs are. So 
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where mcs(EG,EH) is the number of edges in 
the maximum common subgraph of G and H 
and max {|EG |,| EH |}  is the maximum of the 
number of edges in either G or H 
(Shoubridge et al., 1999). 
 
 MCS Vertex Distance 

 
The MCS vertex distance metric is calculated 
by counting the number of vertices in the 
MCS of two graphs, normalising this by the 
number of vertices in the larger of the two 
graphs, and subtracting the result of this from 
one. As with the MCS edge metric, the 
distance will always be in the interval [0,1], 
and the closer the distance is to 0 the more 
similar the graphs are. One has: 
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where mcs(VG,VH) is the number of vertices 
in the maximum common subgraph of G and 
H and max {|VG |,| VH |} is the maximum of 
the number of vertices in either G or H 
(Shoubridge et al., 1999). 
 
Graph Edit Distance 
 
The graph edit distance between graphs G 
and H is calculated by evaluating the 
sequence of edit operations required to 
make graph G isomorphic to graph H using 
the formula 
 
d(G,H)=|VG |+|VH | - 2|VG∩VH |+|EG |+|EH | -
2|EG∩EH |,                                              …(4) 
 
where EG and VG are the edges and vertices 
of graph G, and EH and VH are the edges and 
vertices of graph H (Sanfeliu and Fu, 1983; 
Messmer and Bunke, 1998; Dickinson et al., 
2002). The computational complexity of this 
measure can be reduced by assuming 
unique labeling of the nodes in the graph 
(Dickinson et al., 2004). 
 
Median Graph Edit Distance 
 
The (set) median graph G  of a sequence of 
n uniquely labeled graphs S=(G1,…,Gn) 
minimises the sum of distances between 
itself and the members of S for a particular 
distance metric. The set median graph can 
vary depending on the distance metric, 
d(Gi,Gj), chosen but the general formula is 
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Following Dickinson et al. (2002; 2001), the 
graph edit distance metric, described in 
Equation (4), is used both to construct G  
and to calculate the distance from G  to 



 
 

other graphs. The set median graph nG~  is 
calculated from a sequence of uniquely 
labeled graphs (Gn-L+1,…,Gn) in window of 
length L. This window length is arbitrarily 
chosen to be five in accordance with 
Dickinson et al. (2002; 2001).  
 
The distance between nG~  and Gn+1 is 
classified as abnormal if 
d( nG~ , Gn+1) ≥ αφ,                                  …(6) 
 
where α is a parameter and φ is the average 
deviation of the graphs in the window, (Gn-

L+1,…,Gn), from the median graph, nG~ , given 
by the equation 
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Modality Distance 
 
The Modality distance between graphs G 
and H is the absolute value of the difference 
between the Perron vectors of these graphs. 
Algebraically this can be written as 
 
d(G,H) = || π  (G) - π  (H) ||                 …(8) 
 
where π  (G) and π  (H) are the Perron 
vectors of graphs G and H respectively. The 
Perron vector π  mx1 satisifies the equation 

A π  = ρ π  , π  > 0, ∑
=

m

i
i

1

π  =0           …(9) 

where Amxm is the non-negative irreducible 
adjacency matrix with spectral radius ρ. 
 
Diameter Distance 
 
The Diameter distance between graphs G 
and H is the difference in the average 
longest shortest paths for each graph: 
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where maxd(G,v) is the distance to the 
vertex in G farthest away from v, via the 
shortest path. 
 
Entropy Distance 
 
The “Entropy” distance between graphs G 
and H is defined using entropy-like measures 
associated with the corresponding graphs. 
One has: 
 

d(G,H) = E(H)-E(G),                          …(11a) 
 
where ( )∗E  is the entropy-like measure of 
the edges: 
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is the normalized weight for edge e. 
 
Spectral Distance 
 
The spectral distance between graphs G and 
H is calculated by using the k largest positive 
eigenvalues of the Laplacian, so 
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where λi represents the eigenvalues of the 
Laplace matrix for graph G, and μi represents 
the eigenvalues of the Laplace matrix for 
graph H. 
 
ARMA Modelling 
 
The Box-Jenkins (Box and Jenkins, 1976) 
approach to time series model building is 
followed. This formalises the finding of an 
ARIMA model that adequately represents the 
underlying process that originally generated 
the time series. The integrated step in 
ARIMA is unlikely to be necessary as time 
series of graph distance measures are likely 
to be stationary due to the nature of their 
generation. It is still critically important to 
check that they are stationary and that an 
ARMA model is sufficient to represent the 
underlying process that generated them. The 
three steps of Box-Jenkins modelling are 
identification, estimation and diagnostic 
checking. 
 
Time series are tested for stationarity. 
Autocorrelation and partial autocorrelation 
functions are then examined to determine 
whether an autoregressive (AR), moving 
average (MA) or ARMA model is needed. 
The parameters of the process are estimated 
using least squares for AR processes and 
non-linear optimisation for MA processes. 



 
 

The model adequacy is then checked using 
Akaike's Information Criterion (AIC), 
Schwartz’s Bayesian Information Criterion 
(BIC) and the Durbin-Watson test statistic 
(Akaike, 1973; Schwarz, 1978; Johnston and 
DiNardo, 1997). 
 
Results 
 
The results for a comparison technique and 
for ARMA models of the time series 
constructed using the ten graph distance 
metrics are displayed below. In each of the 
graphs a threshold of twice the standard 
error is shown and, using this threshold, 
accurate detections are displayed as closed 
boxes, false alarms as open circles and false 
negatives as open boxes. 
 
A results summary is given in Table (2). In 
this table the ARMA parameters used to 
generate the combination of true positives, 
false positives and false negatives shown in 
the rightmost three columns are chosen by 
selecting the model with the lowest AIC. The 
calculation times for the modality and 
spectral distances are particularly great due 
to these metrics calculating the eigenvalues 
and eigenvectors of the edge adjecency 
matrix. 
 
Median Graph Edit Distance (non-ARMA) 
 
The edit distance from a median 
edit graph (Dickinson et al., 
2002a) has been used as a 
comparison method for detecting anomalous 
days. Through varying α the threshold 
defined as anomalous is altered. With an α of 
two the three anomalies are detected with 
thirteen false alarms. If α is set to three only 
the three anomalies are detected.  At an α of 
four only two anomalies are detected and 
this continues until α=4.45. When α=4.46 
only the introduction of WBPMS is 
considered to be anomalous and by α=4.47 
no anomalies are 

 
 
 
detected. Unlike the ARMA based methods 
in the rest of the results section the median 
edit graph technique picks the introduction of 
WBPMS as the strongest, rather than the 
weakest, anomaly. 
 
Weight Distance 
 
The Dickey-Fuller unit root test statistic (-
5.718<-3.497), the augmented Dickey-Fuller 
unit root test statistic with two lags (-4.340<-
3.498) and the Phillips-Perron unit root test 
with two lags (-5.711<-3.4965) all indicate 
stationarity at the 1% level. There are 
significant autocorrelations of 0.495, 0.236 
and 0.259 at lags one, 25 and 26 and 
significant partial autocorrelations of 0.495, -
0.272 and 0.236 at lags one, two and 24. 
Neither the autocorrelations nor the partial 
autocorrelations drop away to zero so it 
appears unlikely that purely autoregressive 
or moving average processes will produce 
models with the lowest AIC or BIC. An AR(1) 
MA(1) MA(2) process produces the best AIC 
and BIC, and a good Durbin-Watson test 
statistic (1.984). The standard error is 0.0918 
and, with a decision threshold of two 
standard errors, all anomalies are detected 
with three false alarms. It is possible to set a 
threshold to detect all three anomalies with 

only one false alarm. The 
introduction of WBPMS is 
returned as the least 

anomalous of the anomalous periods. 
 
 
 

Table 2: Summary of results. 

Metric ARMA parameters for 
optimal AIC 

Calculation 
time (secs) 

True 
pos. 

False 
pos. 

False 
neg. 

Weight AR(1) MA(1) MA(2) 0.42 3 3 0 
MCS Weight AR(1) AR(2) MA(1) MA(2) 0.18 3 2 0 
MCS Edge AR(1) MA(1) MA(2) 0.17 3 0 0 
MCS Vertex AR(1) MA(1) MA(2) 0.17 3 0 0 
Graph Edit AR(1) MA(1) MA(2) 0.16 3 0 0 
Median Edit AR(1) AR(2) MA(1) 1.17 3 0 0 
Modality AR(1) AR(2) MA(1) MA(2) 4.94 0 0 3 
Diameter AR(1) MA(1) MA(2) 2.96 1 3 2 
Entropy MA(1) 0.47 3 0 0 
Spectral AR(1) AR(2) MA(1) MA(2) 4.32 0 4 3 



 
 

 
Figure 1. Residuals for weight distance. 

 
MCS Weight Distance 
 
The Dickey-Fuller unit root test statistic (-
3.762<-3.497), the augmented Dickey-Fuller 
unit root test statistic with two lags (-4.897<-
3.498), and the Phillips-Perron unit root test 
statistic (-5.872<-3.497), all indicate 
stationarity at the 1% level. There are 
significant autocorrelations of 0.442, 0.254 
and 0.214 at one, 25 and 26 lags and 
significant partial autocorrelations of 0.442,  -
0.351 and 0.222 at lags of one, two and 24. 
The model with the best AIC and BIC was an 
AR(1) AR(2) MA(1) MA(2) process with an 
excellent Durbin-Watson test statistic 
(2.011). Its standard error was 0.0766 and 
use of a two standard error decision 
threshold detected all three anomalies with 
five false alarms. By setting at threshold 
above 0.170 but below 0.188, the three 
anomalies can be detected with two false 
alarms. Again, the introduction of WBPMS is 
considered the least abnormal of the 
anomalies. 
 

 
Figure 2. Residuals for MCS weight distance. 
 
MCS Edge Distance 
 
Using two lags, the augmented Dickey-Fuller 
test statistic (-4.250<-3.498) and the Phillips-
Perron test statistic (-5.697<-3.497) both 
indicate stationarity at the 1% level. In the 
correlogram there are three significant 
autocorrelations of magnitude 0.496, 0.302 

and 0.203 at lags one, 25, and 26 as well as 
two significant partial autocorrelations of 
magnitude 0.496 and -0.205 at lags one and 
two. The best AIC and BIC values for low 
order processes occurs for an AR(1) MA(1) 
MA(2) model that has a good Durbin-Watson 
test statistic (1.997). The standard error is 
0.1459 and a threshold of two standard 
errors detects all three anomalies with no 
false alarms. WBPMS introduction returns 
the lowest residual of the anomalies. 
 

 
Figure 3. Residuals for MCS edge distance. 

 
 
 MCS Vertex Distance 
 
For two lags, the augmented Dickey-Fuller 
test statistic (-4.355<-3.498) and the Phillips-
Perron test statistic (-5.786<-3.497) indicate 
stationarity at the 1% level. The correlogram 
reveals three significant autocorrelations of 
magnitude 0.483, 0.265 and 0.201 at lags 
one, 25, and 26 as well as one significant 
partial autocorrelation of magnitude 0.483 at 
one lag. Oddly, the best AIC and BIC of low 
order processes is for an AR(1) MA(1) MA(2) 
model which also has by far the best Durbin-
Watson statistic (2.047). The standard error 
is 0.1026 and a decision threshold of two 
standard errors detects all three anomalies 
with no false alarms. Introduction of WBPMS 
is returned as the least anomalous anomaly. 
 

 
Figure 4. Residuals for MCS vertex distance. 

 
 



 
 

 
Graph Edit Distance 
 
The Dickey-Fuller unit root test statistic (-
5.112<-3.497), the augmented Dickey-Fuller 
unit root test statistic with two lags  (-3.593<-
3.498) and the Phillips-Perron test statistic 
with two lags (-5.049<-3.497) all lie below the 
critical values indicating stationarity. 
Correlation analysis shows three significant 
autocorrelations of magnitude 0.576, 0.276 
and 0.241 at lags one, two and three along 
with one partial autocorrelation of magnitude 
0.576 at one lag. Both the autocorrelations 
and partial autocorrelations appear to drop 
away to zero but the partial autocorrelations 
do so more rapidly indicating that an AR 
process is more likely to be the best model of 
this time series than is an MA process. A 
standard set of low order models was tried 
on this time series and the lowest AIC and 
BIC occurred for an AR(1) MA(1) MA(2) 
model with an acceptable Durbin-Watson 
statistic (1.940). The standard error is 110.1 
and a decision threshold of two standard 
errors detects all three identified anomalies 
with one false alarm. Were the threshold set 
between 264.4 and 383.6 all three anomalies 
would be detected with no false alarms. 
 

 
Figure 5. Residuals for edit distance. 
 
Median Graph Edit Distance (ARMA) 
 
Using two lags, the augmented Dickey-Fuller 
test statistic (-3.734<-3.4972) and the 
Phillips-Perron test statistic (-4.865<-3.497) 
both indicate stationarity at the 1% level. The 
correlogram reveals five significant 
autocorrelations of magnitude 0.589, 0.440, 
0.286, 0.198 and 0.216 at lags one, two, 
three, six and 15 and a significant partial 
autocorrelation of 0.589 at a lag of one. Both 
the autocorrelations and the partial 
autocorrelations tail away to zero but this 
happens almost immediately for the partial 
autocorrelations suggesting that an 
autoregressive process may be the best 

model of this time series. The lowest AIC 
occurs for an AR(1) AR(2) AR(3) AR(6) 
AR(15) process but stationarity is not 
assured for 15 lags. An AR(1) AR(2) MA(1) 
process produces the best AIC and BIC for 
process with lags of low enough order to 
ensure stationarity. The Durbin-Watson test 
statistic (2.133) is adequate and the standard 
error is 0.2675. With a decision threshold of 
two standard errors two anomalies (but not 
WBPMS introduction) are detected with no 
false alarms. It is possible to set a threshold 
between 0.374 and 0.500 that allows all 
three anomalies to be detected with no false 
alarms. 
 

 
Figure 6. Residuals for median edit distance. 
 
Modality Distance 
 
The Dickey-Fuller test statistic (-9.948<-
3.498), the doubly lagged augmented 
Dickey-Fuller test statistic and Phillips-Perron 
test statistic (-5.711<-3.497) all indicate 
stationarity. Correlation analysis shows a 
single autocorrelation of magnitude -0.232 at 
lag 26 and one partial autocorrelation of 
magnitude -0.220 at lag 26. As neither the 
autocorrelations nor the partial 
autocorrelations appear to drop away to 
zero, ARMA processes were tried but the 
lack of low lag correlations and 
autocorrelations implied it would be difficult 
to get an ARMA model to fit well. The best 
AIC and BIC were achieved for an AR(1) 
AR(2) MA(1) MA(2) process with a good 
Durbin-Watson statistic (2.039). The 
standard error was 0.5842 and no points 
were detected with a decision threshold of 
two standard errors. Almost all residuals 
were large and no level of threshold setting 
improved the performance without a very 
large number of false alarms. 
 



 
 

 
Figure 7. Residuals for modality distance. 
 
Diameter Distance 
 
The Dickey-Fuller unit root test statistic (-
5.829<-3.497), the augmented Dickey-Fuller 
unit root test statistic with two lags (-3.760<-
3.498) and the Phillips-Perron test statistic 
assuming two lags (-5.764< -3.497) indicate 
stationarity with a less than 1% chance of 
error. Correlation analysis reveals four 
significant autocorrelations of magnitude 
0.484, 0.292, 0.274 and 0.264 at lags one, 
two, three and six as well as three significant 
partial autocorrelations of magnitude 0.484, 
0.240 and -0.198 at lags one, six and eleven. 
Both the autocorrelations and partial 
autocorrelations appear to drop away but 
slowly indicating an ARMA model is likely to 
be best for this time series. The best AIC and 
BIC for low order processes for which the 
series is stationary occurs for an AR(1) 
MA(1) MA(2) model with an acceptable 
(1.947) Durbin-Watson test statistic. The 
standard error is 3452x103 and a decision 
threshold of two standard errors detects one 
anomaly and three false alarms. There is no 
threshold level returning the three anomalies 
without being swamped with false alarms. 
The WBPMS introduction is the least likely of 
the anomalies to be flagged for investigation 
as an anomaly. 
 

 
Figure 8. Residuals for diameter distance. 
 
 
 

Entropy Distance 
 
The Dickey-Fuller unit root test statistic (-
14.60423 <-3.4972), the augmented Dickey-
Fuller unit root test statistic with five lags (-
6.821333 <-3.5000) and the Phillips-Perron 
unit root test with five lags (-21.36172<-
3.4965) all lie below the critical values 
indicating stationarity. Correlation analysis 
shows two autocorrelations of magnitude -
0.370 and -0.208 at lags one and two and 
three partial autocorrelation of magnitude -
0.370, -0.400 and -0.220 at lags one, two 
and five. Both the autocorrelations and 
partial autocorrelations appear to drop away 
to zero but the autocorrelations do so more 
rapidly indicating that an MA process may be 
the best model of this time series. The 
minimum AIC and BIC values occur for an 
MA(1) model for which the Durbin-Watson 
test statistic of 1.794477 is acceptable. The 
standard error is 0.2646 and the use of two 
standard errors as a detection threshold 
detects two anomalous days (but not the 
WBPMS day) with no false alarms. It is 
possible to set a threshold greater than 0.420 
but less than 0.490 allowing detection of all 
three anomalies without any false alarms. 
 

 
Figure 9. Residuals for entropy distance. 
 
 
Spectral Distance 
 
The Dickey-Fuller test statistic (-6.030<-
3.497), augmented Dickey-Fuller test using 
four lags (-4.878<-3.498) and the Phillips-
Perron test with four lags (-5.817<-3.497), 
allow rejection of the hypothesis of a unit root 
at the 1% level, therefore indicating 
stationarity. There are significant 
autocorrelations of 0.459, 0.240 and 0.207 at 
lags of one, five and 31 and significant partial 
autocorrelations of 0.459 and -0.211 at lags 
of one and two. The partial autocorrelations 
seem to drop away to zero so it is possible 
that a purely autoregressive processes will 
produce models with the lowest AIC. While 



 
 

an AR(1) model had the second lowest BIC, 
the lowest AIC and BIC occurred for an 
AR(1) AR(2) MA(1) MA(2) model with an 
acceptable Durbin-Watson statistic (2.169). 
The standard error was 0.5128 and using 
two standard errors as a decision threshold 
detected no anomalies but produced four 
false alarms. There is no threshold at which 
all three anomalies would have been 
detected without a very large number of false 
alarms. 
 

 
Figure 10. Residuals for spectral distance. 

 
Conclusion 
 
Time series based on the MCS edge, MCS 
vertex, edit, median and entropy metrics 
were all able to be modeled sufficiently well 
to detect all three anomalies with no false 
alarms. The weight and MCS weight metrics 
produced time series that could be modeled 
well enough to detect all three anomalies 
with one and two false alarms respectively. 
However, the time series based on the 
spectral, modality and diameter distance 
metrics did not lend themselves to accurate 
ARMA modelling. It is interesting to note that 
the spectral, modality and diameter distance 
metrics are considerably more 
computationally intensive than the others and 
give a much more finely detailed view of the 
distances between graphs. 
 
The WBPMS introduction was the most 
difficult anomaly to detect using ARMA 
based methods. In contrast it was the most 
easily detected using a comparison 
technique based on median edit graphs. This 
problem may be associated with WBPMS 
introduction being a change point where the 
parameters of the best ARMA model of the 
underlying process may have been 
significantly altered. It is possible to find 
change points in time series through 
constructing multiple ARMA models for 
subsections of the series and testing the 
hypothesis that they are the same as each 

other. Such an approach will not detect 
anomalous days by itself, only change 
points. It also relies on having few enough 
change points to allow an adequate ARMA 
model to be built using the points between 
them, a condition met by this data set but not 
by all others. 
 
These results are promising and imply that 
high precision and recall ARMA based 
anomaly detection is possible when 
appropriate graph distance metrics are used 
to build a time series of network graph 
distances. Ideally these graph distance 
metrics should be the MCS edge, MCS 
vertex, edit, median and entropy measures. 
Rigorous testing of whether a practical 
anomaly detection system can be 
constructed in this way can only be achieved 
by repeating this procedure on simulated 
time series of network graphs with anomalies 
of known type and magnitude injected into 
particular graphs. 
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