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Abstract 

This paper deals with dual simplex algorithm and 
sensitivity -analysis (or post-optimality analysis) in 
linear programming with bounded variables .In 
sensitivity analysis, change in coefficient matrix 
A , deletion of a variable and deletion of a 

constraint have been discussed. Numerical 
illustration is also included in support of theory. 

 Keywords: Dual-simplex algorithm, sensitivity-
analysis, linear programming. 

1.  Introduction  

Linear programming with bounded variables have 
been studied by many authors (Dantzig,  1963 ), 
(Turnvec,1968 ), (Duguay,1972 ), 
(Finke,1979 ), (Cavatal,1983 ), (Ho,1991), 
(Hussain, 2000 ). In1954 , Dantzig developed 
the method for solving linear programming with 
upper bound restrictions on the variables. In 
1972 , Duguay et al. studied linear programming 
with relative bounded variables. Later on, various 
methods like revised simplex algorithm, modified 
decomposition algorithm have been developed by 
various authors (Murty,1976), (Ho,1991). This 
paper is concerned with sensitivity analysis for 
linear programming with bounded variables. 
Sensitivity analysis (also called post optimality 
analysis) is the study of the behaviour of the 
optimal solution with respect to changes in the 
input parameters of the original optimization 
problem. It is often as important as solving the 
original problem itself, partly because in real life 
linear programs, the data are rarely exact. They 
are often estimates, subject to measurement 
errors, or are simply uncertain. For example, 
prices may change daily or even hourly, and one 
may not know for sure how much of a resource 
one will have in a given planning horizon. For 
these reasons, one is often interested in how the 
optimal solution would change if the data in the 
linear programming is perturbed in various ways. 
Sensitivity analysis for linear programs with non-
negative variables have been discussed by (Ward, 
Wendell,1990), (Pu Cai, Jin-Yi,1997). In 2001, 
Yildirim et al. discussed sensitivity analysis in 
linear programming and semidefinite programming 
with non-negative variables using interior point 
method. While solving linear programming with 
bounded variables using  
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sensitivity analysis, sometime we get a solution, 
which is optimal but not feasible. Then dual 
simplex algorithm is the method of choice when 
linear programs have to be reoptimized when data 
in program is perturbed. In 1958, Wagner gave 
dual simplex algorithm for solving linear 
programming  

 XCZ T= max          

.0  and  ,=  subject to UXbAX ≤≤  

This algorithm involves the replacement, after 
each cycle of the algorithm, any variable ix  which 
has exceeded its upper bound by its 

complementary variable '
ix , where iii uxx ='+ . 

This involves only a set of sign changes, 
relabelling, and a trivial numerical substitution and 
returns the tableau to standard form.  

Our paper contains four sections. In section 2, we 
discuss the dual simplex algorithm for bounded 
variable problem. In section 3, analysis of 
perturbation in coefficient matrix A , deletion of a 
variable and deletion of a constraint is given. In 
section 4, numerical illustration is given. 

We first briefly discuss the basic results used in 
linear programming with bounded variables which 
are discussed in (Murty, 1976),(Swarup,2000). 

Consider the following linear programming  

XCZP T= max   )(    

,  and  ,=  subject to UXLbAX ≤≤ where 
nRULCX ∈,,, ; ;mRb∈   βα  , are scalars 

and A  is an )( nmnm ≤×  matrix. L  and U  
are lower and upper bounds on the decision 
variables. 

We will make the following two assumptions.  

Assumption 1. The coefficient matrix A  has full 
row rank i.e. mA =)(ρ  

Assumption 2. L  is a non-negative 1)( ×n  
vector.  
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matrices of A  associated with non-basic 
variables which are at their lower and upper 
bounds respectively. 

21
 , , NNB XXX  are the 

variables associated with 21  , , NNB  
respectively. 
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Equation (1) and (2) imply that  
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Equation (3) will be used in reading and 
appending constraints in linear programming with 
bounded variables. 

 

Optimality Criterion: 
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Result 1. A basic feasible solution  
T

NNB XXXX )  (
21

=  will be an optimal basic 

feasible solution of problem )(P  if  

,     0 1NaCZ jjj ∈∀≥−  

,     0 2NaCZ jjj ∈∀≤−  

. variablesbasic allfor  0=    and  jj CZ −   

Note: Such solution as defined in Result 1, is 
called primal as well as dual feasible. If X  is 
optimal solution but not a feasible solution of 
problem (P), then it is called dual feasible solution. 

Let some non-basic variable jx  undergoes 

change say jΔ  and currently jj lx = . Let jx
^

= 

New value of jx  = jjl Δ+ , then  
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Similarly when a non-basic variable jx  which is 

currently at its upper bound undergoes change   



  

i.e. jjjjj uxux Δ−→ =
^
  = , then 

.,1,2,=  ,=
^
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 2. Dual Simplex Algorithm for bounded 
variables  

The dual simplex algorithm starts with a dual 
feasible basis but primal infeasible and walks to a 
terminal basis by moving along adjacent dual 
feasible basis. At each pivot step, this algorithm 
tries to reduce primal infeasibility while retaining 
dual feasibility. 

Let B  be a known dual feasible basis and 

),, ,( =
21

oxoxoxX
mBBB

o
B L  be the associated 

basic vector. Suppose thr  basic variable ox
rB  is 

not within its bounds, so we depart this basic 
variable and enter some non-basic variable say 

Bak ∉ . 

There are two possibilities: Either ox
rB  is below its 

lower bound or above its upper bound. 

 Case I: If ox
rB  is below its lower bound. 

While applying dual simplex iteration in this case, 

our aim is to increase ox
rB  till it attains its lower 

bound. Again there are two possibilities 

(i) 1Nak ∈           (ii) 2Nak ∈ . 

(i)  Let 1Nak ∈ , which is currently non-basic and 

at its lower bound with 0≥− kk CZ , is selected 

for replacing rb , where )  (= 21 mbbbB L . 
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(ii) Let 2Nak ∈ , which is currently non-basic and 

at its upper bound with 0)( ≤− kk CZ  is 

selected for replacing rb . 

Let ,=
^

kkk ux Δ−  where kΔ  in non-negative 
and determined by  



                                                                                   

 

element.pivot 
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  which is same as (11). 

Case II: If ox
rB  is above its upper bound. 

While applying dual simplex iteration in this case, 

our aim is to decrease ox
rB  till it attains its upper 

bound. Again there are two possibilities 

(i) 1Nak ∈              (ii) 2Nak ∈ . 

(i)  Let 1Nak ∈ , which is currently non-basic and 

at its lower bound with 0≥− kk CZ , is selected 

for replacing rb , where )  (= 21 mbbbB L . 

Let ,=
^
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and determined by  
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 theis  y  where  ,==
^

rkrkrkrBrB uyoxx Δ−

Note that 0≥rky . Since 0>kΔ  and for 

decreasing 
rBx , rky  should be positive.  

rk

rrB
k y

uox −
Δ⇒ =   

As in Case I, for maintaining optimality,  

.   0,
^

  and    0,
^

2

1

NaCZ

NaCZ

jjj

jjj

∈∀≤−

∈∀≥−
 

Form (8), for 0,
^

 ,1 ≥−∈ jjj CZNa  for 

0.≤rjy   For 0
^

 0,> ≥− jjrj CZy  if 

 .   1Na
y

CZ
y

CZ
j

rj

jj

rk

kk ∈∀
−

≤
−

   (15) 

Form (8), for 0,
^

 ,2 ≤−∈ jjj CZNa  for 

0.≥rjy  For 0
^

 0,< ≤− jjrj CZy  if 

  

        .   2Na
y

CZ
y

CZ
j

rj

jj

rk

kk ∈∀
−

≤
−

  (16) 



  

Relations (15) and (16) imply that   
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(ii) Let 2Nak ∈ , which is currently non-basic and 

at its upper bound with 0)( ≤− kk CZ  is 

selected for replacing rb . 
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Relations (18) and (19) imply that   
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  Result 2 ( Primal infeasibility criterion) : The 
original problem )(P  is infeasible if 

corresponding to a dual feasible basis B , there 
exists an i  such that either 

(I)  
iBi

iB lbx <=  and 1    0 Nay jij ∈∀≥  and 

.  0 2Nay jij ∈∀≤             or 

(II)  
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iB ubx >=  and 1    0 Nay jij ∈∀≤  

and .  0 2Nay jij ∈∀≥  

Proof: Suppose condition (I) is satisfied in the thi  
row corresponding to dual feasible basis B . This 
row corresponds to the constraint 
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Since (21) is a linear combination of the original 
constraints in the problem )(P . Hence, every 

feasible solution of )(P  must satisfy (21). 

However 
iBi lb <  and 1    0 Nay jij ∈∀≥  and 

 ,  0 2Nay jij ∈∀≤ (21) can't be satisfied by 

any X such that UXL ≤≤ . Hence the primal 
problem is infeasible. Similarly, primal infeasibility 
can be proved when condition (II) is satisfied. 

Result 3 (Dual simplex entering criterion): If some 
)(<

rBrB lx  is chosen to leave the basis then the 

variable kx  enters the basis if 
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rBrB ux  is chosen to leave the 

basis then the variable kx  enters the basis if 
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If any of the criterion is not applicable, then there 
exists no feasible solution to the problem )(P (by 
Result 2). 

Steps of the Algorithm 

Step 1. Convert the minimization problem into 
maximization if it is minimization form. Convert the 
≥  type inequalities, representing the constraints 
of the given linear programming, if any, into those 
of ≤  type. Call this problem as )(P . 

  Step 2. Introduce slack variables in the 
constraints of the given problem and obtain an 
initial basic dual feasible solution and consider the 
corresponding starting dual simplex table. 

 Step 3. Test the nature of )( jj CZ −  in the 

starting simplex table. 

)(a If njuxl jlj ,1,2,=  K∀≤≤  and      

1  0 NaCZ jjj ∈∀≥− and  

2  0 NaCZ jjj ∈∀≤− ,  

then an optimal basic feasible solution of problem 
)(P  has been obtained. 

)(b If    0 1NaCZ jjj ∈∀≥− and 

2  0 NaCZ jjj ∈∀≤−  and at least one basic 

variable say 
iBx  is not within its bounds, then go 

to step )4(a  or )4(b  accordingly as iiB lx <  or 

iiB ux > . 

 Step 4 )(a  Select that basic variable 
iBx  for 

which || iiB lx −  is maximum. Let 
kBx  be such 

that || kkB lx −  is maximum so that kY  leaves 

the basis. Go to step )5(a . 

)(b  Select that basic variable 
iBx  for which 

|| iiB ux −  is maximum. Let 
kBx  be such that 

|| kkB ux −  is maximum so that kY  leaves the 

basis. Go to step )5(b . 

 Step 5 )(a  Test the nature of 

.,1,2,= , njykj K  

)(i If 1  0 Nay jkj ∈∀≥ and  0≤kjy  

2 Na j ∈∀ , there does not exist any feasible 

solution to the given problem (by Result 2). 

)(ii  If at least one kjy  is negative for some 

1Na j ∈  or kjy  is positive for some 2Na j ∈ , 

compute the replacement ratios 
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and choose the maximum of these. The 
corresponding column vector, say rY , then enters 
the basis. 

)(b  Test the nature of .,1,2,= , njykj K  

)(i  If 1  0 Nay jkj ∈∀≤  and  0≥kjy  

2 Na j ∈∀ , there does not exist any feasible 

solution to the given problem (by Result 2). 

)(ii  If at least one kjy  is positive for some 

1Na j ∈  or kjy  is negative for some 2Na j ∈ , 

compute the replacement ratios  
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and choose the minimum of these. The 
corresponding column vector, say rY , enters the 
basis. 

 Step 6. Test the new iterated dual simplex table 
for dual optimality. Repeat the method until either 
an optimum feasible solution has been obtained 
(in a finite number of steps) or there is an 
indication of non-existence of a primal feasible 
solution. 

 Remark 1: If upper bounds of all the decision 
variables are finite then primal problem is 
bounded. If not so, then the dual problem is known 
to be feasible, the primal problem cannot be 
unbounded, by weak duality theorem. The 
algorithm discussed here will terminate with a 
basis that satisfies either the optimality criterion or 
primal infeasibility criterion. 

3. Sensitivity Analysis 

Consider following three changes in data, namely 

(i) Deletion of a variable, 

(ii) Deletion of a constraint, 

(iii) Change in the coefficient matrix A .   

Deletion of a Variable  

Case (a): Deletion of a non-basic variable 

When a non-basic variable say, kx  is dropped, 

then basis and jj CZ −  will not change, only 

BX  and Z  will undergo change, kY  will be 
taken away. 

Let Bak ∉  be dropped. There are two 

possibilities either 1Nak ∈  or 2Nak ∈ . 

 Case (i): 1Nak ∈ , then 

kkBB lYXX  =' +  and kkk lCZZZ )(=' −+ . 

In this case optimality is maintained but feasibility 

may be hampered. If BBB UXL ≤≤ ' , then new 

solution is optimal as well as feasible. If '
BX  is not 

feasible then apply dual simplex algorithm and 
proceed.  

 Case (ii): 2Nak ∈  

Parallel to case (i). 

Case (b): Deletion of a basic variable 

Deletion of a basic variable may affect the 
optimality as well as feasibility. For deletion of 

iBx , we make 
iBx  a non-basic, give it a high 

negative cost M−  ( M+  in minimization case) 
in optimal table of the problem )(P and also 

change its bounds ∞=, 0=
iBiB ul . Calculate 

revised values of Z  and jj CZ − . And 
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Now, 
iBx  serves as an artificial variable. While 

making these changes, only optimality can 
hamper. If optimality is hampered, then apply 
simplex algorithm and find optimal solution. In the 
optimal table check, whether 

iBx  is basic or non-

basic.  

If 
iBx  is non-basic then it will be at its lower 

bound and now delete its column, no change in 
objective function value and basic variables. If 

iBx  is basic and not replaceable then the problem 

will be infeasible [8,Chapter 2,p.43-44)], otherwise 
replace it and proceed as discussed above. 

(ii) Deletion of a constraint  

Case(a) Deletion of inactive constraint 

An inactive constraint is that one which is satisfied 
as strict inequality. So its corresponding slack or 
surplus variable would be basic and at non-zero 

level. Suppose we want to delete thi constraint 
which is inactive. Then delete the row and column 

of the slack/surplus variable corresponding to thi  



                                                                                   

constraint. There will be no change in ZX B  ,  

and jj CZ − . 

Case(b) Deletion of an active constraint(Binding 
constraint) 

A constraint, which is satisfied as an equation, is 

called an active constraint. Let thi  constraint is 
active and we want to delete it. For this, we make 
this constraint inactive and then proceed as in 
case(a). To make it inactive its slack/surplus must 
be introduced into basis at positive level. So give 
slack/surplus high positive cost M+ ( M−  in 
minimization case) and calculate ''

jj CZ −  for this 

slack/surplus variable and enter slack/surplus 
variable into basis at next iteration. This makes 
the constraint inactive. Cut the row and column of 
corresponding slack/surplus variable. 

Note: Let 
iSx  be the slack variable in thi  

constraint, which is active in optimal table. As 
0≥

iSx  and has no finite upper bound. So, if 

iSx  is non-basic, then it will be at its lower bound 

only and when 

0<='' , MYCCZMC
iSBiSiSiS −−→ , so it 

will always enter the basis and make constraint 
inactive. 

 

(iii) Change in A   

 Change in A  is equivalent to deletion of one 
constraint and addition of another. This change in 
A  can be handled by applying the results for 

addition and deletion of constraints as discussed 
earlier. Now we are interested in finding the range 
by which each component of any activity vector 
can be changed one at a time so that same 
solution remains optimal basic feasible solution of 
new problem. 

Let )     (= 21 mbbbB L  be the optimal feasible 
basis for the original problem and 

]       [= 21 ns aaaaA LL  and sa  undergoes 
change. 

There are two possibilities: 

Case(I) Bas ∉             Case(II) Bas ∈ . 

Case(I) Bas ∉ . 
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So change in 1Nas ∈  affects both optimality as 
well as feasibility. 

Range of ksaδ  so that optimality is maintained. 



  

For solution '
BX  to be optimal,  
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  Range of ksaδ  so that feasibility is maintained. 
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Similarly, if 2Nas ∈  undergoes change parallel 

results will be obtained by replacing sl  by su . 

Range of ksaδ  so that optimality as well as 
feasibility both are maintained is obtained by 
taking union of (22) and (26). 

 Remark 2: Solution of the problem when some  

1Nas ∈   undergoes change 

If only optimality is hampered, apply simplex 
algorithm and solve. If only feasibility is hampered, 
apply dual simplex algorithm and solve. If both 
optimality as well as feasibility are hampered, then 

sx  which is currently at lower bound, set at its 

upper bound ss ux =  and calculate 

,= ''
sjBB uYXX −  

.)(=  and '''
sss uCZZZ −−  

All other relative cost coefficients, basis and jY  

remain unaltered during this change. Now sx  is at 

its upper bound and 0<ss CZ − . So this 
solution is optimal but need not be feasible. If 

BX  is feasible, then it is optimal basic feasible 
solution, otherwise apply dual simplex algorithm 
and solve. Similarly we can solve for 2Nas ∈ . 

Case(II) Bas ∈  (say rs ba = ) 

Let )    (=
21 NNB LLXX  be the optimal basic 

feasible solution of the original problem )(P  

corresponding to optimal basis B . When 
'  ss aa → , let .  'BB→  

Let )    (= 21 mk bbbbB LL and     

) (= 21
1

mkB ββββ LL− . 

 Calculation of 1' )( −B   
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Using (28) and (29), 
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 For solution to be feasible rλ  should be positive 
and also satisfy (30).Using (27) and (30) 
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 Inequality (31) implies that   
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where  ).(=
iBiBrkrBiki lxx −− ββγ    (36) 
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where  ).(=
iBiBrkrBiki uxx −− ββη  (38) 

 (33), (34), (35) and (37) together give the range 

of ksaδ  so that '
BX  is a feasible solution of new 

problem. Note that, if for some i , ∞=
iBu , then 

for finding the range of ksaδ  for solution '
BX  to 

be optimal, we do not consider the inequality (37) 
corresponding to that i . 

 Range of ksaδ  for '
BX  to be optimal solution 
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 where  . )(= kBrjjjrkj CyCZ ββα −−  (40) 

For 2Na j ∈ ,  0)( ≤+− jksjj aCZ αδ  implies 

that,   
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Relations (38) and (40) together give the required 

range of ksaδ  for solution '
BX  to be optimal 

solution of new problem. And (38), (40) ,(33), (34), 

(35), (37) give the range of ksaδ  for solution '
BX  

to be optimal as well as feasible solution of new 
problem. 

Remark 3: Solution of the problem when some  
Bas ∈   undergoes change  

For simplicity, let 1x  be the basic variable in the 

optimum basic vector BX  for )(P . Suppose we 
have to modify first input-output coefficient say 

11a , in the column vector 1a  of 1x  to .'
11a  The 

modified column vector of 1x  will be  

 .)      (= 1121
'
11

'
1

T
mi aaaaa LL  

Let '
1x  indicate the level of this activity 

corresponding to the new column vector '
1a . The 

previous column vector 1a  is no longer a part of 
the problem and it should be eliminated. 

Physically, '
1x  replaces 1x  in the optimal tableau. 

This is same as addition of a variable and deletion 
of another. Construct a new problem by 
augmenting the present original tableau with new 

variable '
1x  with its column vector '

1a  and cost 

coefficient 1C  and 1
'
11 uxl ≤≤ . Also change the 

cost coefficient of 1x  to M− ( M+  in 

minimization case), where M  is a very large 
positive number. This leads to the problem, which 

we call )( 'P . In this new problem 1x  has high 
negative cost, so serves as an artificial variable. 

We can set '
1x  at its lower bound/upperbound and 

make changes in BX  and objective function 
value as discussed during the addition of new 
activity. While solving the problem there are three 
possibilities. 

)(i  Only optimality is hampered. 

)(ii  Only feasibility is hampered. 

)(iii  Optimality as well as feasibility both are 
hampered. 

Case )(iii  can be reduced to case )(i  or )(ii  by 

changing the level of '
1x  as discussed during the 

addition of a variable. 

Case )(i  In this case apply simplex algorithm and 

proceed. If 1x  attains its lower bound which is 

zero now. As problem )( 'P  is feasible and 1x  is 

non-basic with 0=1x . Let ),( '
11 xxx nL  be 

optimal basic feasible solution (OBFS) of )( 'P .  

Then ),( '
12 xxx nL  will be optimal basic feasible 

solution of the required problem say ).( *P  Let  

optimal  objective  function  value  of )( 'P  be 'Z  
and  

. 
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Then optimal  objective  function  value  of  the  

required  problem, '
111

'* =)(= ZlCZZZ −+ , 

since 0=1l . 

 If 1x  is still basic and can be replaced, then 
replace it and delete its column from the optimal 
table. Otherwise the required problem will be 
infeasible (Murty, 1976). 

Case )(ii  Apply dual simplex algorithm till dual 
optimality or primal infeasibility criterion is 

satisfied. If )( 'P  is feasible, then proceed as in 

case )(i , otherwise required problem is also 
infeasible. 

4 Concluding Remarks 

Other changes like change in cost vector C , 
change in requirement vector b , addition of a 
variable and addition of a constraint can be easily 
discussed on the same line as for these three 
cases. In the previous discussion, we have 
considered change only in one element of matrix 
A . But the method, discussed above can be 

used to solve the problem when we consider more 
than one change in an activity vector. Similarly, 
Change in a row vector (more than one element at 
a time) is equivalent to addition of one constraint 
and deletion of another. Similarly change in a 
column vector (more than one element at a time) 
is equivalent to addition of one variable and 
deletion of another. 



  

 

5 Numerical Illustration   

 321 353 =  M      )( xxxZaximizeP ++  

subject to 19,2   321 ≤++ xxx  

33,342                   321 ≤++ xxx  

 where 51 1 ≤≤ x , 7,2 2 ≤≤ x  1.0 3 ≤≤ x  

Solution: Optimal feasible solution of the problem 
)(P  is (5,23/4,0)=oX  and 175/4=Z . 

Optimal table showing this solution is:  

                            Table 1 

 

5 31 l        b      l       b      u   *L →      

       → jC   3         5         3          0         0 

BC     B    BX     1y        2y      3y       4y       5y  

 

  0      4a    5/2      0         0    1/2−      1    1/2−  

  5      2a   23/4    1/2       1      3/4     0       1/4  

→−  jCjZ        1/2−        0      3/4     0      5/4  

   Z=175/4 

 

(L* denotes the level of the variable in the 
solution.) 

  Deletion of a variable  

(i) Deletion of a non-basic variable. 

Let in table 1, 11 = ux  be dropped, 
then

,
33/4
5/2

=(5)
1/2
0
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Here optimality is hampered as 22 >33/4= ux . 

As 1x  is non-basic so on deleting the column 1Y  

in table 1, we have  

 

 

           5 3 l        b        l         b     L →   

         → jC     5           3           0         0 

BC       B     BX       2y        3y        4y       5y          

   0      4a    5/2         0    1/2−          1       1/2−  

  5 2a  33/4 1 3/4  0  1/4                               

→−  jj CZ              0           3/4        0       5/4  

Z=165/4 

_______________________________________ 

 As 7>33/4=2x , so it departs and 3x  enters 
the basis. Applying dual simplex algorithm 
repeatedly optimal solution of perturbed problem 
is given by  

    b         b        u        u     L  3 2→   

   → jC     5              3          0           0 

BC  B   BX         2y         3y          4y       5y                

0     4a    4            2             1          1           0               

0    5a       2          4              3          0           1                

→−  jj CZ       - 5           -3           0           0 

 Z=38 

 

(ii) Deletion of a basic variable. 

Let Bba ∈22 =  be deleted. Here we consider 

that 02 ≥x , so it serves as an artificial variable. 

Also MC −→  2  . From table 1, making 

changes in jj CZ −  and Z  accordingly, we 

have following table 

 

 

 

 

 

 

 



                                                                                   

 

 

 5 31 l         b        l         b        u     L →   

→ jC    3          -M          3            0          0 

BC  B  BX   1y      2y     3y      4y     5y                 

0     4a   5/2      0         0          -1/2         1       -1/2 

 -M 2a  23/4  1/2         1          3/4           0       1/4 

→−  jCjZ  -M/2-3      0      -3M/4-3      0   –M/4 

4/)6023(= +− MZ  

As 0   33 <−CZ , so 3x undergoes change. 
Applying simplex algorithm 

 

5 31 l         b        l         b        u     L →   

 → jC    3         -M          3           0          0 

BC   B  BX     1y        2y         3y        4y       5y  

0      4a    3        0           0        -1/2         1      -1/2 

-M 2a  5    1/2     1    3/4    0     1/4       

→−  jj CZ    -M/2-3     0     -3M/4-3    0      -M/4 

Z=-5M+18 

 

Again 055 <−CZ  , so 5x  undergoes change. 
Applying simplex algorithm again, we have 

 

5 31 l         b        l         b        u     L →   

→ jC   3         -M           3          0           0 

 BC   B BX    1y        2y          3y        4y       5y  

  0   4a   13        1          2             1          1          0 

  0   5a   20         2         4             3          0          1 

  →−  jj CZ   -3         M           -3          0          0 

    Z=18 

 

So the solution in above table is optimal and 2x  in 

non-basic and at lower bound, so on deleting 2Y , 
optimal solution of the perturbed problem is 

18='Z  and (5,1).='X  

 Deletion of a constraint  

 (i) Deletion of an inactive constraint. 

As 0>5/2=4x , so first constraint is inactive. 
So to find the optimal solution of the perturbed 
problem, we delete the column 4Y  and first row 

from table 1 and there will be no change in BX , 

Z  and .jj CZ −  

(ii) Deletion of an active constraint. 

In problem (P), second constraint is active. To 
make it inactive, change MC  0)(=5 →  and 

calculate '
5

'
5 CZ −  in Table 1.  

 

5 31 l         b        l         b        u     L →   

→ jC   3            5           3          0          M 

 BC   B  BX    1y         2y       3y        4y       5y  

  0   4a   5/2       0           0        -1/2        1       -1/2 

  5   2a   23/4    1/2         1         3/4         0       1/4   

   →−  jj CZ -1/2        0        3/4       0       5/4-M 

  Z=175/4. 

 

As 0<'
5

'
5 CZ − , so 5x  undergoes change. 

 Applying simplex algorithm repeatedly, we have  

b         b        l         l        l     L  321→   

→ jC   3          5            3             0         M 

 BC  B BX    1y        2y         3y          4y       5y  

  0   4a  14      1           2             1           1           0 

  M  5a  23     2           4             3            0          1 



  

 

→−  jj CZ 2M-3  4M-5      3M-3         0          0 

Z=13+23M 

 

Note that 0>5x , so second constraint is 

inactive. On deleting 5Y  and second row in the 

above table and also making changes in Z  and 

jj CZ − , we have the following table  

 

           b        l         l        l     L  321→   

         → jC   3          5            3            0        

  BC    B   BX       1y          2y        3y          4y        

  0      4a    14         1             2            1          1          

       

  →−  jj CZ       -3             -5          -3          0 

   Z=13 

This solution in above table is feasible but not 
optimal, so applying simplex algorithm repeatedly; 
the optimal solution of the perturbed problem is 
given by 

 

  

                       l     u        b        u     L 4 31→  

                    → jC      3         5           3          0        

 BC     B      BX       1y        2y         3y        4y        

  0      2a        6         1/2         1          1/2        1/2          

          

    Z=51, →−  jj CZ -1/2      0        -1/2        5/2 

 

  Change in A   

 (i) Let Ba ∉1  undergoes change and 

.  111111 aaa δ+→  Here 1= 1,= ks . When 

11a  changes then BX , Z  and only 11 CZ −  
undergo change as discussed earlier. 
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Since 0=1βBC , so new solution will be optimal 

for all values of 11aδ . 

Range of 11aδ  for maintaining feasibility is given 
by 
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0=  0,>5= 121111 uu ββ . 

For 1=i , we have 1/2,11 ≤≤∞− aδ  and for 

2=i , solution is feasible for all values of 11aδ . 

Thus range of 11aδ  for maintaining optimality as 
well as feasibility is 

1/2.11 ≤≤∞− aδ  

Let 3=11aδ , then feasibility will be hampered.  
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5 31 l         b        l         b        u     L →   

→ jC    3           5          3            0          0 

BC   B BX     1y        2y      3y        4y       5y                 

0     4a  -1/2       3          0       -1/2          1       -1/2 

5    2a  23/4     1/2         1        3/4          0       1/4 

 →−  jCjZ     -1/2         0        3/4          0       5/4 

4/175=Z  

As 0<4x , so it departs. Applying dual simplex 
method, OBFS of perturbed problem will be given 
by  

 

          54 3 l         l        l         b        b     L →   

→ jC   3         5           3            0            0 

BC  B  BX   1y     2y      3y       4y      5y                       

3     1a    29/6    1        0        -1/6         1/3       -1/6 

 5    2a  35/6     0        1         5/6        -1/6         1/3 

  →−  jCjZ      0        0           2/3         1/6       7/6 

Z=131/3 

 (ii) Let Bba ∈22 =  undergoes change and 

.  222222 aaa δ+→  Here 2= 2,= kr . When 

22aδ  undergoes change, let .  '
BB XX →  

Range of 22aδ  for solution '
BX  to be optimal 
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 For 1=i ,  
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2
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Note that inequality (37)  is not used here as 
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1
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7
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Combining (41) and (42), range of 22aδ  for 

solution '
BX  to be feasible is   
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Thus '
BX  will be optimal if   

14 22 ≤≤− aδ                                    (45)    (2) 

 From (43) and (44), range of 22aδ  for solution 
'
BX  to be OBFS of the perturbed problem is  

1.
7
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22 ≤≤− aδ  

Let 2=22aδ . For solving the problem, make 

02 ≥x  and introduce a new variable '
2x  with 

5=2C  and 7.2 '
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From table 1,  

 

'
25 31 l    l       b      l       b      u     L →   

→ jC   3         5       3          0       0       5 

 BC  B BX    1y       2y      3y     4y     5y     '
2y  

  0   4a  9/2      0         0    -1/2        1      -1/2    -1 

  5   2a  11/4   1/2       1     3/4        0       1/4    3/2 

→−  jj CZ   -1/2     0      3/4        0      5/4    5/2 

Z=155/4 

This solution is optimal as well as feasible. Now 
we delete 2x . 

On changing MC −→  5=2  and calculate 

,  , , jjj aCZZ ∀−  in above table  

'
25 31 l    l       b      l       b      u     L →   

→ jC   3        -M       3         0        0       5 

 BC  B BX    1y        2y      3y       4y     5y   '
2y  

  0   4a   9/2     0          0    -1/2        1       -1/2    -1 

  -M 2a 11/4   1/2        1     3/4        0        1/4    3/2 

                

→−  jCjZ  -M/2-3  0  -3M/4-3  0  -M/4, –3M/2-5 

Z=25-11M/4 

 

As 0< '
2

'
2 CZ − , so '

2x  undergoes change. 
Applying simplex algorithm repeatedly, we get the 
following table  

 

 

 

 

 

 



                                                                                   

 

       
b    l       b     u     0l   u       L 5 321 =→  

     → jC        3        -M         3        0         0       5 

 BC  B BX     1y     2y        3y     4y      5y    '
2y  

  0   4a  19/3   1/3       2/3       0         1     -1/3     0      

 5  '
2a  10/3     1/3      2/3      1/2      0       1/6      1 

 

  →−  jCjZ -4/3   10/3+M   -1/2    0      5/6      0 

Z=104/3 

Now 2x  is non-basis and at lower bound, so 

delete 2Y . There will be no change in Z  and 

BX . So the optimal solution of perturbed problem 

will be 1) 10/3, (5,=BX  and 104/3=Z .   
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