Post-optimality Analysis in Bounded Variables Problem

Kalpana Dahiya* and Vanita Verma*

Abstract

This paper deals with dual simplex algorithm and sensitivity -analysis (or post-optimality analysis) in linear programming with bounded variables .In sensitivity analysis, change in coefficient matrix A, deletion of a variable and deletion of a constraint have been discussed. Numerical illustration is also included in support of theory

Keywords: Dual-simplex algorithm, sensitivityanalysis, linear programming.

1. Introduction

Linear programming with bounded variables have been studied by many authors (Dantzig, 1963), (Turnvec,1968), (Duguay,1972), (Finke,1979), (Cavatal,1983), (Ho,1991), (Hussain, 2000). In1954, Dantzig developed the method for solving linear programming with upper bound restrictions on the variables. In 1972 , Duguay et al. studied linear programming with relative bounded variables. Later on, various methods like revised simplex algorithm, modified decomposition algorithm have been developed by various authors (Murty,1976), (Ho,1991). This paper is concerned with sensitivity analysis for linear programming with bounded variables. Sensitivity analysis (also called post optimality analysis) is the study of the behaviour of the optimal solution with respect to changes in the input parameters of the original optimization problem. It is often as important as solving the original problem itself, partly because in real life linear programs, the data are rarely exact. They are often estimates, subject to measurement errors, or are simply uncertain. For example, prices may change daily or even hourly, and one may not know for sure how much of a resource one will have in a given planning horizon. For these reasons, one is often interested in how the optimal solution would change if the data in the linear programming is perturbed in various ways. Sensitivity analysis for linear programs with nonnegative variables have been discussed by (Ward, Wendell,1990), (Pu Cai, Jin-Yi,1997). In 2001, Yildirim et al. discussed sensitivity analysis in linear programming and semidefinite programming with non-negative variables using interior point method. While solving linear programming with bounded variables using

[^0] Chandigarh, India,

Email: Kalpana_math@yahoo.co.in \& v_verma1@yahooo.com)
sensitivity analysis, sometime we get a solution, which is optimal but not feasible. Then dual simplex algorithm is the method of choice when linear programs have to be reoptimized when data in program is perturbed. In 1958, Wagner gave dual simplex algorithm for solving linear programming

$$
\max Z=C^{T} X
$$

subject to $A X=b$, and $0 \leq X \leq U$.
This algorithm involves the replacement, after each cycle of the algorithm, any variable X_{i} which has exceeded its upper bound by its complementary variable x_{i}, where $x_{i}+x_{i}=u_{i}$. This involves only a set of sign changes, relabelling, and a trivial numerical substitution and returns the tableau to standard form.

Our paper contains four sections. In section 2, we discuss the dual simplex algorithm for bounded variable problem. In section 3, analysis of perturbation in coefficient matrix A, deletion of a variable and deletion of a constraint is given. In section 4, numerical illustration is given.

We first briefly discuss the basic results used in linear programming with bounded variables which are discussed in (Murty, 1976),(Swarup,2000).

Consider the following linear programming

$$
\text { (P) } \max Z=C^{T} X
$$

subject to $A X=b$, and $L \leq X \leq U$, where $X, C, L, U \in R^{n} ; b \in R^{m} ; \quad \alpha, \beta$ are scalars and A is an $m \times n(m \leq n)$ matrix. L and U are lower and upper bounds on the decision variables.

We will make the following two assumptions.
Assumption 1. The coefficient matrix A has full row rank i.e. $\rho(A)=m$

Assumption 2. L is a non-negative $(n \times 1)$ vector.

Let $A=\left[\begin{array}{lll}B & N_{1} & N_{2}\end{array}\right], X=\left[\begin{array}{lll}X_{B} & X_{N_{1}} & X_{N_{2}}\end{array}\right]^{T}$, where B is a basis matrix, N_{1}, N_{2} are the sub
matrices of A associated with non-basic variables which are at their lower and upper bounds respectively. $X_{B}, X_{N_{1}}, X_{N_{2}}$ are the variables associated with B, N_{1}, N_{2} respectively.

Consider $\quad A X=b$,
$\Rightarrow B X_{B}+N_{1} X_{N_{1}}+N_{2} X_{N_{2}}=b$,
$X_{B}+B^{-1} N_{1} X_{N_{1}}+B^{-1} N_{2} X_{N_{2}}=B^{-1} b$,
$\Rightarrow X_{B}+\sum_{a_{j} \in N_{1}} Y_{j} x_{j}+\sum_{a_{j} \in N_{2}} Y_{j} x_{j}=B^{-1} b$.

Currently, $X_{B}=X_{B}^{o}$ (say)=current value of basic variables;
$x_{j}=l_{j}, \forall a_{j} \in N_{1} ; x_{j}=u_{j}, \forall a_{j} \in N_{2}$. So (1) implies that

$$
\begin{equation*}
X_{B}^{o}+\sum_{a_{j} \in N_{1}} Y_{j} l_{j}+\sum_{a_{j} \in N_{2}} Y_{j} u_{j}=B^{-1} b, \tag{2}
\end{equation*}
$$

i.e. $x_{B_{i}}^{O}+\sum_{a_{j} \in N_{1}} y_{i j} l_{j}+\sum_{a_{j} \in N_{2}} y_{i j} u_{j}=\left(B^{-1} b\right)_{i}$,

$$
\forall \quad i=1,2, \ldots, m
$$

$$
x_{B_{i}}^{O}=\left(B^{-1} b\right)_{i}-\sum_{a_{j} \in N_{1}} y_{i j} l_{j}-\sum_{a_{j} \in N_{2}} y_{i j} u_{j},
$$

$$
\forall i=1,2, \ldots, m
$$

Equation (1) and (2) imply that
$\left\{\begin{array}{l}X_{B}+\sum_{a_{j} \in N_{1}} Y_{j}\left(x_{j}-l_{j}\right) \\ +\sum_{a_{j} \in N_{2}} Y_{j}\left(x_{j}-u_{j}\right)\end{array}\right\}=X_{B}^{o}$,
i.e. $\left\{\begin{array}{l}x_{B_{i}}+\sum_{a_{j} \in N_{1}} y_{i j}\left(x_{j}-l_{j}\right) \\ +\sum_{a_{j} \in N_{2}} y_{i j}\left(x_{j}-u_{j}\right)\end{array}\right\}=x_{B_{i}}^{O}$,
$\forall \quad i=1,2, \ldots, m$.

Equation (3) will be used in reading and appending constraints in linear programming with bounded variables.

Optimality Criterion:

$$
\begin{align*}
& Z(X)=C^{T} X \\
& \quad=C_{B}^{T} X_{B}+C_{N_{1}}^{T} X_{N_{1}}+C_{N_{2}}^{T} X_{N_{2}} \\
& \quad=\left\{\begin{array}{l}
C_{B}^{T}\left(B^{-1} b\right)-\sum_{a_{j} \in N_{1}}\left(Z_{j}-C_{j}\right) x_{j} \\
-\sum_{a_{j} \in N_{2}}\left(Z_{j}-C_{j}\right)
\end{array}\right\} \tag{4}
\end{align*}
$$

[Using (1)]
where $Z_{j}=\sum_{i=1}^{m} C_{B_{i}} y_{i j}$.

$$
\begin{align*}
Z^{o} & =\text { Current value of } Z \\
& =\left\{\begin{array}{l}
C_{B}^{T}\left(B^{-1} b\right)-\sum_{a_{j} \in N_{1}}\left(Z_{j}-C_{j}\right) l_{j} \\
-\sum_{a_{j} \in N_{2}}\left(Z_{j}-C_{j}\right) u_{j}
\end{array}\right\} . \tag{5}
\end{align*}
$$

Result 1. A basic feasible solution $X=\left(X_{B} X_{N_{1}} X_{N_{2}}\right)^{T}$ will be an optimal basic feasible solution of problem (P) if

$$
\begin{aligned}
& Z_{j}-C_{j} \geq 0 \quad \forall a_{j} \in N_{1} \\
& Z_{j}-C_{j} \leq 0 \quad \forall a_{j} \in N_{2}
\end{aligned}
$$

and $\quad Z_{j}-C_{j}=0$ for all basic variables.
Note: Such solution as defined in Result 1, is called primal as well as dual feasible. If X is optimal solution but not a feasible solution of problem (P), then it is called dual feasible solution.

Let some non-basic variable X_{j} undergoes
\wedge
change say Δ_{j} and currently $x_{j}=l_{j}$. Let $x_{j}=$ New value of $X_{j}=l_{j}+\Delta_{j}$, then
\wedge
$X_{B}=X_{B}^{o}-Y_{j} \Delta_{j}$,
i.e. $\chi_{B_{i}}=x_{B_{i}}^{O}-y_{i j} \Delta_{j}, \forall i=1,2, \ldots, m$

Similarly when a non-basic variable x_{j} which is currently at its upper bound undergoes change
$\begin{array}{ll}\text { i.e. } & x_{j}=u_{j} \rightarrow x_{j}=u_{j}-\Delta_{j}, \quad \text { then } \quad \Rightarrow \Delta_{k}=\frac{l_{r}-x_{B_{r}}^{O}}{-y_{r k}}\end{array}$
$\hat{x}_{B_{i}}=x_{B_{i}}^{O}+y_{i j} \Delta_{j}, \forall i=1,2, \ldots, m$.

2. Dual Simplex Algorithm for bounded

 variablesThe dual simplex algorithm starts with a dual feasible basis but primal infeasible and walks to a terminal basis by moving along adjacent dual feasible basis. At each pivot step, this algorithm tries to reduce primal infeasibility while retaining dual feasibility.

Let B be a known dual feasible basis and $X_{B}^{o}=\left(x_{B_{1}}^{O}, x_{B_{2}}^{O}, \cdots, x_{B_{m}}^{O}\right)$ be the associated basic vector. Suppose $r^{\text {th }}$ basic variable $x_{B_{r}}^{O}$ is not within its bounds, so we depart this basic variable and enter some non-basic variable say $a_{k} \notin B$.

There are two possibilities: Either $X_{B_{r}}^{O}$ is below its lower bound or above its upper bound.

Case I: If $X_{B_{r}}^{O}$ is below its lower bound.
While applying dual simplex iteration in this case, our aim is to increase $X_{B_{r}}^{O}$ till it attains its lower bound. Again there are two possibilities
(i) $a_{k} \in N_{1}$
(ii) $a_{k} \in N_{2}$.
(i) Let $a_{k} \in N_{1}$, which is currently non-basic and at its lower bound with $Z_{k}-C_{k} \geq 0$, is selected for replacing b_{r}, where $B=\left(b_{1} b_{2} \cdots b_{m}\right)$.

Let $\hat{X}_{k}=l_{k}+\Delta_{k}$, where Δ_{k} in non-negative and determined by
$\hat{x}_{B_{r}}=x_{B_{r}}^{O}-y_{r k} \Delta_{k}=l_{r}$, where y_{rk} is the pivot element.

Note that $y_{r k} \leq 0$. Since $\Delta_{k}>0$ and for increasing $x_{B_{r}}, y_{r k}$ should be negative.

When a_{k} enters and b_{r} departs, then

$$
\begin{gather*}
\hat{Z_{j}-C_{j}=\left(Z_{j}-C_{j}\right)-\frac{y_{r j}}{y_{r k}}\left(Z_{k}-C_{k}\right)} \\
\forall a_{j} \notin B \tag{8}
\end{gather*}
$$

For maintaining optimality,
\wedge

$$
\begin{aligned}
& Z_{j}-C_{j} \geq 0, \forall a_{j} \in N_{1} \text { and } \\
& \wedge \\
& Z_{j}-C_{j} \leq 0, \forall a_{j} \in N_{2}
\end{aligned}
$$

For $y_{r j}<0, \bar{Z}_{j}-C_{j} \geq 0$ if

$$
\begin{equation*}
\frac{Z_{k}-C_{k}}{y_{r k}} \geq \frac{Z_{j}-C_{j}}{y_{r j}} \forall a_{j} \in N_{1} \tag{9}
\end{equation*}
$$

Clearly from (8), for $y_{r j} \leq 0, Z_{j}-C_{j} \leq 0$, for $a_{j} \in N_{2}$.

For $y_{r j}>0, \hat{Z}_{j}-C_{j} \leq 0$ if

$$
\begin{equation*}
\frac{Z_{k}-C_{k}}{y_{r k}} \geq \frac{Z_{j}-C_{j}}{y_{r j}} \forall a_{j} \in N_{2} \tag{10}
\end{equation*}
$$

Relations (9) and (10) imply that

$$
\frac{Z_{k}-C_{k}}{y_{r k}}=\max \left\{\begin{array}{l}
\left(\left.\frac{Z_{j}-C_{j}}{y_{r j}} \right\rvert\, a_{j} \in N_{1}, y_{r j}<0\right), \tag{11}\\
\left(\left.\frac{Z_{j}-C_{j}}{y_{r j}} \right\rvert\, a_{j} \in N_{2}, y_{r j}>0\right)
\end{array}\right\} .
$$

(ii) Let $a_{k} \in N_{2}$, which is currently non-basic and at its upper bound with $\left(Z_{k}-C_{k}\right) \leq 0$ is selected for replacing b_{r}.
\wedge
Let $X_{k}=u_{k}-\Delta_{k}$, where Δ_{k} in non-negative and determined by
\wedge
$X_{B_{r}}=x_{B_{r}}^{O}+y_{r k} \Delta_{k}=l_{r}$, where y_{rk} is the pivot element.
Note that $y_{r k} \geq 0$. Since $\Delta_{k}>0$ and for increasing $x_{B_{r}}, y_{r k}$ should be positive.
$\Rightarrow \Delta_{k}=\frac{l_{r}-x_{B_{r}}^{O}}{y_{r k}}$
For maintaining optimality,
\wedge
$Z_{j}-C_{j} \geq 0, \forall a_{j} \in N_{1}$ and
\wedge
$Z_{j}-C_{j} \leq 0, \forall a_{j} \in N_{2}$.
Form (8), for $\quad a_{j} \in N_{1}, \hat{Z}_{j}-C_{j} \geq 0, \quad$ for $y_{r j} \geq 0$. For $y_{r j}<0, \hat{Z}_{j}-C_{j} \geq 0$ if
$\frac{Z_{k}-C_{k}}{y_{r k}} \geq \frac{Z_{j}-C_{j}}{y_{r j}} \forall a_{j} \in N_{1}$.
Form(8), for $\quad a_{j} \in N_{2}, \hat{Z}_{j}-C_{j} \leq 0, \quad$ for

$$
y_{r j} \leq 0 . \text { For } y_{r j}>0, \hat{Z}_{j}-C_{j} \leq 0 \text { if }
$$

$\frac{Z_{k}-C_{k}}{y_{r k}} \geq \frac{Z_{j}-C_{j}}{y_{r j}} \forall a_{j} \in N_{2}$.
Relations (12) and (13) imply that $\frac{Z_{k}-C_{k}}{y_{r k}}=$

$$
\left.\max \left\{\begin{array}{l}
\left(\left.\frac{Z_{j}-C_{j}}{y_{r j}} \right\rvert\, a_{j} \in N_{1}, y_{r j}<0\right), \\
\left(\left.\frac{Z_{j}-C_{j}}{y_{r j}} \right\rvert\, a_{j} \in N_{2}, y_{r j}>0\right.
\end{array}\right)\right\}
$$

which is same as (11).
Case II: If $X_{B_{r}}^{O}$ is above its upper bound.

While applying dual simplex iteration in this case, our aim is to decrease $x_{B_{r}}^{O}$ till it attains its upper bound. Again there are two possibilities
(i) $a_{k} \in N_{1}$
(ii) $a_{k} \in N_{2}$.
(i) Let $a_{k} \in N_{1}$, which is currently non-basic and at its lower bound with $Z_{k}-C_{k} \geq 0$, is selected for replacing b_{r}, where $B=\left(b_{1} b_{2} \cdots b_{m}\right)$.
\wedge
Let $x_{k}=l_{k}+\Delta_{k}$, where Δ_{k} in non-negative and determined by
\wedge
$x_{B_{r}}=x_{B_{r}}^{O}-y_{r k} \Delta_{k}=u_{r}$, where y_{rk} is the pivot element.
Note that $y_{r k} \geq 0$. Since $\Delta_{k}>0$ and for decreasing $X_{B_{r}}, y_{r k}$ should be positive.
$\Rightarrow \Delta_{k}=\frac{x_{B_{r}}^{O}-u_{r}}{y_{r k}}$
As in Case I, for maintaining optimality,
$\hat{Z}_{j}-C_{j} \geq 0, \forall a_{j} \in N_{1}$ and
\wedge
$Z_{j}-C_{j} \leq 0, \forall a_{j} \in N_{2}$.

Form (8), for $a_{j} \in N_{1}, Z_{j}-C_{j} \geq 0, \quad$ for $y_{r j} \leq 0$. For $y_{r j}>0, \hat{Z}_{j}-C_{j} \geq 0$ if
$\frac{Z_{k}-C_{k}}{y_{r k}} \leq \frac{Z_{j}-C_{j}}{y_{r j}} \forall a_{j} \in N_{1}$.
Form (8), for $a_{j} \in N_{2}, \hat{Z}_{j}-C_{j} \leq 0, \quad$ for $y_{r j} \geq 0$. For $y_{r j}<0, \hat{Z}_{j}-C_{j} \leq 0$ if

$$
\begin{equation*}
\frac{Z_{k}-C_{k}}{y_{r k}} \leq \frac{Z_{j}-C_{j}}{y_{r j}} \forall a_{j} \in N_{2} \tag{16}
\end{equation*}
$$

Relations (15) and (16) imply that
$\frac{Z_{k}-C_{k}}{y_{r k}}=\min \left\{\begin{array}{l}\left(\left.\frac{Z_{j}-C_{j}}{y_{r j}} \right\rvert\, a_{j} \in N_{1}, y_{r j}>0\right), \\ \left(\left.\frac{Z_{j}-C_{j}}{y_{r j}} \right\rvert\, a_{j} \in N_{2}, y_{r j}<0\right)\end{array}\right\}$.
(ii) Let $a_{k} \in N_{2}$, which is currently non-basic and at its upper bound with $\left(Z_{k}-C_{k}\right) \leq 0$ is selected for replacing b_{r}.

\wedge

Let $x_{k}=u_{k}-\Delta_{k}$, where Δ_{k} in non-negative and determined by
\wedge $x_{B_{r}}=x_{B_{r}}^{O}+y_{r k} \Delta_{k}=u_{r}$, where y_{rk} is the pivot element.
Note that $y_{r k} \leq 0$. Since $\Delta_{k}>0$ and for decreasing $x_{B_{r}}, y_{r k}$ should be negative.
$\Rightarrow \Delta_{k}=\frac{x_{B_{r}}^{O}-u_{r}}{-y_{r k}}$
For maintaining optimality,
\wedge
$Z_{j}-C_{j} \geq 0, \forall a_{j} \in N_{1}$ and
\wedge
$Z_{j}-C_{j} \leq 0, \forall a_{j} \in N_{2}$.

Form (8),for $\quad a_{j} \in N_{1}, \widehat{Z}_{j}-C_{j} \geq 0, \quad$ for
$y_{r j} \leq 0$. For $y_{r j}>0, Z_{j}-C_{j} \geq 0$ if
$\frac{Z_{k}-C_{k}}{y_{r k}} \leq \frac{Z_{j}-C_{j}}{y_{r j}} \forall a_{j} \in N_{1}$.

$$
\wedge
$$

Form (8), for $a_{j} \in N_{2}, Z_{j}-C_{j} \leq 0$, for \wedge
$y_{r j} \geq 0$. For $y_{r j}<0, Z_{j}-C_{j} \leq 0$ if

$$
\begin{equation*}
\frac{Z_{k}-C_{k}}{y_{r k}} \leq \frac{Z_{j}-C_{j}}{y_{r j}} \forall a_{j} \in N_{2} \tag{19}
\end{equation*}
$$

Relations (18) and (19) imply that

$$
\frac{Z_{k}-C_{k}}{y_{r k}}=
$$

$$
\min \left\{\begin{array}{l}
\left(\left.\frac{Z_{j}-C_{j}}{y_{r j}} \right\rvert\, a_{j} \in N_{1}, y_{r j}>0\right), \tag{20}\\
\left(\left.\frac{Z_{j}-C_{j}}{y_{r j}} \right\rvert\, a_{j} \in N_{2}, y_{r j}<0\right)
\end{array}\right\},(
$$

which is same as (17).
Result 2 (Primal infeasibility criterion) : The original problem (P) is infeasible if corresponding to a dual feasible basis B, there exists an i such that either
(I) $x_{B_{i}}=\bar{b}_{i}<l_{B_{i}}$ and $y_{i j} \geq 0 \forall a_{j} \in N_{1}$ and $y_{i j} \leq 0 \forall a_{j} \in N_{2}$. or
(II) $x_{B_{i}}=\bar{b}_{i}>u_{B_{i}}$ and $y_{i j} \leq 0 \forall a_{j} \in N_{1}$ and $y_{i j} \geq 0 \forall a_{j} \in N_{2}$.

Proof: Suppose condition (I) is satisfied in the $i^{\text {th }}$ row corresponding to dual feasible basis B. This row corresponds to the constraint $\left\{\begin{array}{l}x_{B_{i}}+\sum_{a_{j} \in N_{1}} y_{i j}\left(x_{j}-l_{j}\right)+ \\ \sum_{a_{j} \in N_{2}} y_{i j}\left(x_{j}-u_{j}\right)\end{array}\right\}=\bar{b}_{i}$

Since (21) is a linear combination of the original constraints in the problem (P). Hence, every feasible solution of (P) must satisfy (21). However $\bar{b}_{i}<l_{B_{i}}$ and $y_{i j} \geq 0 \forall a_{j} \in N_{1}$ and $y_{i j} \leq 0 \forall a_{j} \in N_{2}$, (21) can't be satisfied by any X such that $L \leq X \leq U$. Hence the primal problem is infeasible. Similarly, primal infeasibility can be proved when condition (II) is satisfied.

Result 3 (Dual simplex entering criterion): If some $X_{B_{r}}\left(<l_{B_{r}}\right)$ is chosen to leave the basis then the variable X_{k} enters the basis if
$\frac{Z_{k}-C_{k}}{y_{r k}}=\max \left\{\begin{array}{l}\left(\left.\frac{Z_{j}-C_{j}}{y_{r j}} \right\rvert\, a_{j} \in N_{1}, y_{r j}<0\right), \\ \left(\left.\frac{Z_{j}-C_{j}}{y_{r j}} \right\rvert\, a_{j} \in N_{2}, y_{r j}>0\right)\end{array}\right\}$,
and if some $X_{B_{r}}\left(>u_{B_{r}}\right)$ is chosen to leave the basis then the variable X_{k} enters the basis if
$\frac{Z_{k}-C_{k}}{y_{r k}}=\min \left\{\begin{array}{l}\left(\left.\frac{Z_{j}-C_{j}}{y_{r j}} \right\rvert\, a_{j} \in N_{1}, y_{r j}>0\right), \\ \left(\left.\frac{Z_{j}-C_{j}}{y_{r j}} \right\rvert\, a_{j} \in N_{2}, y_{r j}<0\right)\end{array}\right\}$.
If any of the criterion is not applicable, then there exists no feasible solution to the problem (P) (by Result 2).

Steps of the Algorithm

Step 1. Convert the minimization problem into maximization if it is minimization form. Convert the \geq type inequalities, representing the constraints of the given linear programming, if any, into those of \leq type. Call this problem as (P).

Step 2. Introduce slack variables in the constraints of the given problem and obtain an initial basic dual feasible solution and consider the corresponding starting dual simplex table.

Step 3. Test the nature of $\left(Z_{j}-C_{j}\right)$ in the starting simplex table.
(a) If $\quad l_{j} \leq x_{l} \leq u_{j} \forall j=1,2, \ldots, n \quad$ and
$Z_{j}-C_{j} \geq 0 \forall a_{j} \in N_{1}$ and
$Z_{j}-C_{j} \leq 0 \forall a_{j} \in N_{2}$,
then an optimal basic feasible solution of problem (P) has been obtained.
(b) If $Z_{j}-C_{j} \geq 0 \forall a_{j} \in N_{1}$ and
$Z_{j}-C_{j} \leq 0 \forall a_{j} \in N_{2}$ and at least one basic variable say $X_{B_{i}}$ is not within its bounds, then go to step $4(a)$ or $4(b)$ accordingly as $x_{B_{i}}<l_{i}$ or $X_{B_{i}}>u_{i}$.

Step 4 (a) Select that basic variable $x_{B_{i}}$ for which $\left|x_{B_{i}}-l_{i}\right|$ is maximum. Let $X_{B_{k}}$ be such
that $\left|x_{B_{k}}-l_{k}\right|$ is maximum so that Y_{k} leaves the basis. Go to step $5(a)$.
(b) Select that basic variable $x_{B_{i}}$ for which $\left|x_{B_{i}}-u_{i}\right|$ is maximum. Let $X_{B_{k}}$ be such that $\left|x_{B_{k}}-u_{k}\right|$ is maximum so that Y_{k} leaves the basis. Go to step $5(b)$.

Step 5(a) Test the nature of $y_{k j}, j=1,2, \ldots, n$.
(i) If $y_{k j} \geq 0 \forall a_{j} \in N_{1}$ and $y_{k j} \leq 0$
$\forall a_{j} \in N_{2}$, there does not exist any feasible solution to the given problem (by Result 2).
(ii) If at least one $y_{k j}$ is negative for some $a_{j} \in N_{1}$ or $y_{k j}$ is positive for some $a_{j} \in N_{2}$, compute the replacement ratios

$$
\left\{\begin{array}{l}
\left(\left.\frac{Z_{j}-C_{j}}{y_{k j}} \right\rvert\, a_{j} \in N_{1}, y_{k j}<0\right), \\
\left(\left.\frac{Z_{j}-C_{j}}{y_{k j}} \right\rvert\, a_{j} \in N_{2}, y_{k j}>0\right)
\end{array}\right\}
$$

and choose the maximum of these. The corresponding column vector, say Y_{r}, then enters the basis.
(b) Test the nature of $y_{k j}, j=1,2, \ldots, n$.
(i) If $y_{k j} \leq 0 \forall a_{j} \in N_{1} \quad$ and $\quad y_{k j} \geq 0$ $\forall a_{j} \in N_{2}$, there does not exist any feasible solution to the given problem (by Result 2).
(ii) If at least one $y_{k j}$ is positive for some $a_{j} \in N_{1}$ or $y_{k j}$ is negative for some $a_{j} \in N_{2}$, compute the replacement ratios

$$
\left\{\begin{array}{l}
\left(\left.\frac{Z_{j}-C_{j}}{y_{k j}} \right\rvert\, a_{j} \in N_{1}, y_{k j}>0\right), \\
\left(\left.\frac{Z_{j}-C_{j}}{y_{k j}} \right\rvert\, a_{j} \in N_{2}, y_{k j}<0\right)
\end{array}\right\}
$$

and choose the minimum of these. The corresponding column vector, say Y_{r}, enters the basis.

Step 6. Test the new iterated dual simplex table for dual optimality. Repeat the method until either an optimum feasible solution has been obtained (in a finite number of steps) or there is an indication of non-existence of a primal feasible solution.

Remark 1: If upper bounds of all the decision variables are finite then primal problem is bounded. If not so, then the dual problem is known to be feasible, the primal problem cannot be unbounded, by weak duality theorem. The algorithm discussed here will terminate with a basis that satisfies either the optimality criterion or primal infeasibility criterion.

3. Sensitivity Analysis

Consider following three changes in data, namely
(i) Deletion of a variable,
(ii) Deletion of a constraint,
(iii) Change in the coefficient matrix A.

Deletion of a Variable
Case (a): Deletion of a non-basic variable
When a non-basic variable say, X_{k} is dropped, then basis and $Z_{j}-C_{j}$ will not change, only X_{B} and Z will undergo change, Y_{k} will be taken away.

Let $a_{k} \notin B$ be dropped. There are two possibilities either $a_{k} \in N_{1}$ or $a_{k} \in N_{2}$.

Case (i): $a_{k} \in N_{1}$, then
$X_{B}^{\prime}=X_{B}+Y_{k} l_{k}$ and $Z^{\prime}=Z+\left(Z_{k}-C_{k}\right) l_{k}$.
In this case optimality is maintained but feasibility may be hampered. If $L_{B} \leq X_{B}^{\prime} \leq U_{B}$, then new solution is optimal as well as feasible. If X_{B}^{\prime} is not feasible then apply dual simplex algorithm and proceed.

Case (ii): $a_{k} \in N_{2}$
Parallel to case (i).

Case (b): Deletion of a basic variable

Deletion of a basic variable may affect the optimality as well as feasibility. For deletion of
$X_{B_{i}}$, we make $X_{B_{i}}$ a non-basic, give it a high negative cost $-M$ ($+M$ in minimization case) in optimal table of the problem (P) and also change its bounds $l_{B_{i}}=0, u_{B_{i}}=\infty$. Calculate revised values of Z and $Z_{j}-C_{j}$. And

$$
\begin{aligned}
& Z_{j}^{\prime}-C_{j}^{\prime}=C_{B}^{\prime} Y_{j}-C_{j} \\
& =\sum_{r=1, r \neq i}^{m} C_{B_{r}} y_{r j}+M y_{i j}-C_{j} \\
& =\left(Z_{j}-C_{j}\right)+\left(M-C_{B_{i}}\right) y_{i j} \\
& Z^{\prime}=\left[\begin{array}{l}
C_{B}^{\prime}\left(B^{-1} b\right)-\sum_{a_{j} \in N_{1}}\left(Z_{j}^{\prime}-C_{j}^{\prime}\right) l_{j}- \\
\sum_{a_{j} \in N_{2}}\left(Z_{j}^{\prime}-C_{j}^{\prime}\right) u_{j}
\end{array}\right] \\
& =\left[\begin{array}{l}
\sum_{r=1, r \neq i}^{m} C_{B_{r}}\left(B^{-1} b\right)_{r}-M\left(B^{-1} b\right)_{i}- \\
\sum_{a_{j} \in N_{1}}\left[\left(Z_{j}-C_{j}\right)+\left(M-C_{B_{i}}\right) y_{i j}\right] l_{j}- \\
\sum_{a_{j} \in N_{2}}\left[\left(Z_{j}-C_{j}\right)+\left(M-C_{B_{i}}\right) y_{i j}\right] u_{j}+ \\
C_{B_{i}} x_{B_{i}}-C_{B_{i}} x_{B_{i}}
\end{array}\right] \\
& =\mathrm{Z}^{0}-\left(\mathrm{M}+\mathrm{C}_{\mathrm{B}_{\mathrm{i}}}\right) \mathrm{X}_{\mathrm{B}_{\mathrm{i}}} .
\end{aligned}
$$

Now, $X_{B_{i}}$ serves as an artificial variable. While making these changes, only optimality can hamper. If optimality is hampered, then apply simplex algorithm and find optimal solution. In the optimal table check, whether $X_{B_{i}}$ is basic or nonbasic.

If $X_{B_{i}}$ is non-basic then it will be at its lower bound and now delete its column, no change in objective function value and basic variables. If $X_{B_{i}}$ is basic and not replaceable then the problem will be infeasible [8,Chapter 2,p.43-44)], otherwise replace it and proceed as discussed above.
(ii) Deletion of a constraint

Case(a) Deletion of inactive constraint

An inactive constraint is that one which is satisfied as strict inequality. So its corresponding slack or surplus variable would be basic and at non-zero level. Suppose we want to delete $i^{\text {th }}$ constraint which is inactive. Then delete the row and column of the slack/surplus variable corresponding to $i^{\text {th }}$
constraint. There will be no change in X_{B}, Z and $Z_{j}-C_{j}$.

Case(b) Deletion of an active constraint(Binding constraint)

A constraint, which is satisfied as an equation, is called an active constraint. Let $i^{\text {th }}$ constraint is active and we want to delete it. For this, we make this constraint inactive and then proceed as in case(a). To make it inactive its slack/surplus must be introduced into basis at positive level. So give slack/surplus high positive cost $+M(-M$ in minimization case) and calculate $Z_{j}^{\prime}-C_{j}^{\prime}$ for this slack/surplus variable and enter slack/surplus variable into basis at next iteration. This makes the constraint inactive. Cut the row and column of corresponding slack/surplus variable.

Note: Let $x_{S_{i}}$ be the slack variable in $i^{\text {th }}$ constraint, which is active in optimal table. As $x_{S_{i}} \geq 0$ and has no finite upper bound. So, if $x_{S_{i}}$ is non-basic, then it will be at its lower bound only and when $C_{S_{i}} \rightarrow M, Z_{S_{i}}^{\prime}-C_{S_{i}}^{\prime}=C_{B} Y_{S_{i}}-M<0$, so it will always enter the basis and make constraint inactive.

(iii) Change in A

Change in A is equivalent to deletion of one constraint and addition of another. This change in A can be handled by applying the results for addition and deletion of constraints as discussed earlier. Now we are interested in finding the range by which each component of any activity vector can be changed one at a time so that same solution remains optimal basic feasible solution of new problem.

Let $B=\left(b_{1} b_{2} \cdots b_{m}\right)$ be the optimal feasible basis for the original problem and $A=\left[\begin{array}{lllll}a_{1} & a_{2} & \cdots & a_{s} & \cdots\end{array} a_{n}\right]$ and a_{s} undergoes change.

There are two possibilities:
Case(I) $a_{s} \notin B \quad$ Case(II) $a_{\mathrm{s}} \in B$.

Case(I) $a_{s} \notin B$.
If $a_{s} \notin B$, then either $a_{s} \in N_{1}$ or $a_{s} \in N_{2}$.
If $a_{s} \in N_{1}$, then $x_{s}=l_{s}$.

Let $a_{s}=\left(\begin{array}{l}a_{1 s} \\ a_{2 s} \\ \vdots \\ a_{k s} \\ \vdots \\ a_{m s}\end{array}\right) \Rightarrow a_{\mathrm{s}}^{\prime}=\left(\begin{array}{l}a_{1 s} \\ a_{2 s} \\ \vdots \\ a_{k s}+\delta a_{k s} \\ \vdots \\ a_{m s}\end{array}\right)$.
$Y_{s}^{\prime}=B^{-1} a_{s}^{\prime}=B^{-1}\left[a_{s}+\left(\begin{array}{l}0 \\ 0 \\ \vdots \\ \delta a_{k s} \\ \vdots \\ 0\end{array}\right)\right]=Y_{s}+\bar{\beta}_{k} \delta a_{k s}$,
where $B^{-1}=\left(\overleftarrow{\beta}_{1} \overleftarrow{\beta}_{2} \cdots \overleftarrow{\beta}_{k} \cdots \overleftarrow{\beta}_{m}\right)$.

$$
X_{B}^{\prime}=X_{B}-\overleftarrow{\beta}_{k} \delta a_{k s} l_{s}
$$

$$
\Leftrightarrow x_{B_{i}}^{\prime}=x_{B_{i}}-\beta_{i k} \delta a_{k s} l_{s} \forall i=1,2, \cdots, m
$$

$$
Z_{j}^{\prime}-C_{j}^{\prime}=Z_{j}-C_{j} \forall a_{j} \in\left(N_{1} \bigcup N_{2}\right) \backslash\{s\}
$$

and

$$
\begin{gathered}
Z_{s}^{\prime}-C_{s}^{\prime}=C_{B} Y_{s}^{\prime}-C_{s} \\
=C_{B}\left(Y_{s}+\overleftarrow{\beta}_{k} \delta a_{k s}\right)-C_{s} \\
=\left(Z_{s}-C_{s}\right)+C_{B} \overleftarrow{\beta}_{k} \delta a_{k s} . \\
Z^{\prime}=\left[\begin{array}{l}
C_{B}\left(B^{-1} b\right)-\sum_{a_{j} \in N_{1}}\left(Z_{j}^{\prime}-C_{j}^{\prime}\right) l_{j}- \\
\sum_{a_{j} \in N_{2}}\left(Z_{j}^{\prime}-C_{j}^{\prime}\right) u_{j}
\end{array}\right] \\
=\left[\begin{array}{l}
C_{B}\left(B^{-1} b\right)-\sum_{a_{j} \in N_{1},}\left(Z_{j \neq s}-C_{j}\right) l_{j} \\
-\sum_{a_{j} \in N_{2}}\left(Z_{j}-C_{j}\right) u_{j} \\
-\left[\left(Z_{s}-C_{s}\right)+C_{B} \overleftarrow{\beta}_{k} \delta a_{k s}\right] l_{s}
\end{array}\right] \\
=Z^{o}-C_{B} \overleftarrow{\beta}_{k} \delta a_{k s} l_{s} .
\end{gathered}
$$

So change in $a_{s} \in N_{1}$ affects both optimality as well as feasibility.

Range of $\delta a_{k s}$ so that optimality is maintained.
$\left.\begin{array}{l}\text { For solution } X_{B}^{\prime} \text { to be optimal, } \\ Z_{j}^{\prime}-C_{j}^{\prime} \geq 0 \forall a_{j} \in N_{1} \text { and } Z_{j}^{\prime}-C_{j}^{\prime} \leq 0 \forall a_{j} \in N_{2} . \leq \min _{i}\left\{\left.\begin{array}{l}\left(\left.\frac{u_{B_{i}}-x_{B_{i}}}{-\beta_{i k} l_{s}} \right\rvert\, \beta_{i k} l_{s}<0\right), \\ \text { i.e. }\left(Z_{s}-C_{s}\right)+C_{B} \overleftarrow{\beta}_{k} \delta a_{k s} \geq 0 \text { for } a_{s} \in N_{1}, \\ \left.\text { [Since } Z_{j}^{\prime}-C_{j}=Z_{j}-C_{j}, \forall a_{j} \in\left(N_{1} \bigcup N_{2}\right) \backslash\{s\}\right],\end{array} \frac{x_{B_{i}}-l_{B_{i}}}{\beta_{i k} l_{s}} \right\rvert\, \beta_{i k} l_{s}>0\right)\end{array}\right\}$.

$$
\begin{equation*}
C_{B} \overleftarrow{\beta}_{k} \delta a_{k s} \geq-\left(Z_{s}-C_{s}\right) \tag{26}
\end{equation*}
$$

$$
\delta a_{k s} \geq-\frac{\left(Z_{s}-C_{s}\right)}{C_{B} \overleftarrow{\beta}_{k}} \text { if } C_{B} \overleftarrow{\beta}_{k}>0
$$

$$
\delta a_{k s} \leq-\frac{\left(Z_{s}-C_{s}\right)}{C_{B} \overleftarrow{\beta}_{k}} \text { if } C_{B} \overleftarrow{\beta}_{k}<0
$$

i.e. $\left\{\left.-\frac{\left(Z_{s}-C_{s}\right)}{C_{B} \bar{\beta}_{k}} \right\rvert\, C_{B} \bar{\beta}_{k}>0\right\} \leq \delta a_{k s} \leq$

$$
\begin{equation*}
\left\{\left.-\frac{\left(Z_{s}-C_{s}\right)}{C_{B} \overleftarrow{\beta}_{k}} \right\rvert\, C_{B} \overleftarrow{\beta}_{k}<0\right\} . \tag{22}
\end{equation*}
$$

Range of $\delta a_{k s}$ so that feasibility is maintained.

For feasibility, $L_{B} \leq X_{B}^{\prime} \leq U_{B}$
i.e. $l_{B_{i}} \leq x_{B_{i}}-\beta_{i k} \delta a_{k s} l_{s} \leq u_{B_{i}} \forall i=1,2, \cdots, m$.

If $\quad \beta_{i k} l_{s}>0, \quad$ then (23) hold if

$$
\begin{gather*}
\max _{i}\left\{\left.\frac{u_{B_{i}}-x_{B_{i}}}{-\beta_{i k} l_{s}} \right\rvert\, \beta_{i k} l_{s}>0\right\} \leq \delta a_{k s} \leq \\
\min _{i}\left\{\left.\frac{x_{B_{i}}-l_{B_{i}}}{\beta_{i k} l_{s}} \right\rvert\, \beta_{i k} l_{s}>0\right\} . \tag{24}
\end{gather*}
$$

f $\beta_{i k} l_{s}<0$, then (23) hold if

$$
\begin{align*}
& \max _{i}\left\{\left.\frac{x_{B_{i}}-l_{B_{i}}}{\beta_{i k} l_{s}} \right\rvert\, \beta_{i k} l_{s}<0\right\} \leq \delta a_{k s} \leq \\
& \min _{i}\left\{\left.\frac{u_{B_{i}}-x_{B_{i}}}{-\beta_{i k} l_{s}} \right\rvert\, \beta_{i k} l_{s}<0\right\} \tag{25}
\end{align*}
$$

Relations (24) and (25) together imply that for maintaining feasibility $\delta a_{k s}$ should lie in

$$
\left.\max _{i}\left\{\begin{array}{l}
\left(\left.\frac{x_{B_{i}}-l_{B_{i}}}{\beta_{i k} l_{s}} \right\rvert\, \beta_{i k} l_{s}<0\right), \\
\left(\left.\frac{u_{B_{i}}-x_{B_{i}}}{-\beta_{i k} l_{s}} \right\rvert\, \beta_{i k} l_{s}>0\right.
\end{array}\right)\right\} \leq \delta a_{k s}
$$

Similarly, if $a_{s} \in N_{2}$ undergoes change parallel results will be obtained by replacing l_{s} by u_{s}. Range of $\delta a_{k s}$ so that optimality as well as feasibility both are maintained is obtained by taking union of (22) and (26).

Remark 2: Solution of the problem when some $a_{\mathrm{s}} \in N_{1}$ undergoes change

If only optimality is hampered, apply simplex algorithm and solve. If only feasibility is hampered, apply dual simplex algorithm and solve. If both optimality as well as feasibility are hampered, then X_{s} which is currently at lower bound, set at its upper bound $x_{s}=u_{s}$ and calculate
$\bar{X}_{B}=X_{B}^{\prime}-Y_{j}^{\prime} u_{s}$,
$(2 \mathfrak{Z}) \bar{Z}=Z^{\prime}-\left(Z_{s}^{\prime}-C_{s}^{\prime}\right) u_{s}$.
All other relative cost coefficients, basis and Y_{j} remain unaltered during this change. Now X_{s} is at its upper bound and $Z_{s}-C_{s}<0$. So this solution is optimal but need not be feasible. If \bar{X}_{B} is feasible, then it is optimal basic feasible solution, otherwise apply dual simplex algorithm and solve. Similarly we can solve for $a_{s} \in N_{2}$.
$\underline{\text { Case(II) }} a_{s} \in B\left(\right.$ say $\left.a_{s}=b_{r}\right)$
Let $X=\left(\begin{array}{lll}X_{B} & L_{N_{1}} & L_{N_{2}}\end{array}\right)$ be the optimal basic feasible solution of the original problem (P) corresponding to optimal basis B. When $a_{s} \rightarrow a_{s}^{\prime}$, let $B \rightarrow B^{\prime}$.

Let $B=\left(\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{k}\end{array} \cdots b_{m}\right)$ and
$B^{-1}=\left(\overleftarrow{\beta}_{1} \overleftarrow{\beta}_{2} \cdots \overleftarrow{\beta}_{k} \cdots \overleftarrow{\beta}_{m}\right)$.
Calculation of $\left(B^{\prime}\right)^{-1}$

$$
B^{-1} B^{\prime}=B^{-1}\left(b_{1} b_{2} \cdots b_{r}^{\prime} \cdots b_{m}\right)
$$

$$
=\left(\begin{array}{ll}
e_{1} \cdots e_{r-1} & \lambda \quad e_{r+1} \cdots e_{m}
\end{array}\right)
$$

It can be verified that if $\lambda_{r} \neq 0$, then

$$
\left(B^{-1} B^{\prime}\right)^{-1}=\left(e_{1} \cdots e_{r-1} \lambda e_{r+1} \cdots e_{m}\right)^{-1}
$$

$$
=\left(\begin{array}{lllll}
1 & 0 \cdots & \lambda_{1} & \cdots & 0 \\
0 & 1 \cdots & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
\vdots & & \lambda_{r} & 0 & \\
& & \vdots & 1 & \\
\cdots & & \lambda_{m} & 0 & 1
\end{array}\right)^{-1}
$$

$$
=\left(\begin{array}{lllll}
1 & 0 \cdots & -\lambda_{1} / \lambda_{r} & \cdots & 0 \\
0 & 1 \cdots & -\lambda_{2} / \lambda_{r} & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
\vdots & & 1 / \lambda_{r} & 0 & \\
& & \vdots & 1 & \\
\cdots & & -\lambda_{m} / \lambda_{r} & 0 & 1
\end{array}\right)=P
$$

$\left(B^{\prime}\right)^{-1}\left(B^{-1}\right)^{-1}=P$,
$\left(B^{\prime}\right)^{-1}=P B^{-1}$.
So B^{\prime} is non-singular iff $\lambda_{r} \neq 0$.
$X_{B}^{\prime}=\left(B^{\prime}\right)^{-1} b-\sum_{a_{j} \in N_{1}} Y_{j}^{\prime} l_{j}-\sum_{a_{j} \in N_{2}} Y_{j}^{\prime} u_{j}$

Using (28) and (29),

$$
X_{B}^{\prime}=\left(\begin{array}{c}
x_{B_{1}}-\frac{\lambda_{1}}{\lambda_{r}} x_{B_{r}} \\
x_{B_{2}}-\frac{\lambda_{2}}{\lambda_{r}} x_{B_{r}} \\
\vdots \\
\frac{x_{B_{r}}}{\lambda_{r}} \\
\vdots \\
x_{B_{m}}-\frac{\lambda_{m}}{\lambda_{r}} x_{B_{r}}
\end{array}\right) .
$$

For solution X_{B}^{\prime} to be feasible, $l_{B_{i}} \leq x_{B_{i}}^{\prime} \leq u_{B_{i}} \forall i=1,2, \cdots, m$.
i.e. $l_{B_{i}} \leq x_{B_{i}}-\frac{\lambda_{i}}{\lambda_{r}} \leq u_{B_{i}} \forall i \neq r$
and $l_{B_{r}} \leq \frac{x_{B_{r}}}{\lambda_{r}} \leq u_{B_{r}}$
For solution to be feasible λ_{r} should be positive and also satisfy (30).Using (27) and (30)
i.e. $l_{B_{i}} \leq x_{B_{i}}-\frac{\beta_{i k} \delta a_{k s}}{1+\beta_{r k} \delta a_{k s}} x_{B_{r}} \leq u_{B_{i}}$,
$\Rightarrow\left\{\begin{array}{c}l_{B_{i}}\left(1+\beta_{r k} \delta a_{k s}\right) \leq \\ x_{B_{i}}\left(1+\beta_{r k} \delta a_{k s}\right)-\beta_{i k} \delta a_{k s} x_{B_{r}} \leq \\ u_{B_{i}}\left(1+\beta_{r k} \delta a_{k s}\right) \forall i \neq r\end{array}\right\}$
and

$$
\begin{align*}
& B^{-1} a_{s}^{\prime}=B^{-1}\left(a_{s}+\left[0 \cdots \delta a_{k s} \cdots 0\right]^{T}\right) \\
& =B^{-1}\left(b_{r}+\left[0 \cdots \delta a_{k s} \cdots 0\right]^{T}\right) \\
& =B^{-1} b_{r}+\bar{\beta}_{k} \delta a_{k s} \\
& =e_{r}+\overleftarrow{\beta}_{k} \delta a_{k s} \\
& \text { (Since } B^{-1} b_{r}=e_{r} \text { being basic variable) } \\
& B^{-1} a_{s}^{\prime}=e_{r}+\overleftarrow{\beta}_{k} \delta a_{k s}=\lambda \text { (say) } \\
& =\left(\lambda_{1} \lambda_{2} \ldots . \lambda_{r} \ldots . . \lambda_{m}\right)^{T} \\
& \Rightarrow\left\{\begin{array}{ll}
\lambda_{i} & =\beta_{i k} \delta a_{k s} \forall i \neq r \\
\lambda_{r} & =1+\beta_{r k} \delta a_{k s}
\end{array}\right\} \tag{27}\\
& \left(B^{\prime}\right)^{-1} b=\left(P B^{-1}\right) b \\
& =\left(\begin{array}{c}
\left(B^{-1} b\right)_{1}-\frac{\lambda_{1}}{\lambda_{r}}\left(B^{-1} b\right)_{r} \\
\left(B^{-1} b\right)_{2}-\frac{\lambda_{2}}{\lambda_{r}}\left(B^{-1} b\right)_{r} \\
\vdots \\
\frac{\left(B^{-1} b\right)_{r}}{\lambda_{r}} \\
\vdots \\
\left(B^{-1} b\right)_{m}-\frac{\lambda_{m}}{\lambda_{r}}\left(B^{-1} b\right)_{r}
\end{array}\right),
\end{align*}
$$

$$
\left\{\begin{array}{r}
l_{B_{r}}\left(1+\beta_{r k} \delta a_{k s}\right) \leq x_{B_{r}} \leq \tag{31}\\
u_{B_{r}}\left(1+\beta_{r k} \delta a_{k s}\right)
\end{array}\right\}
$$

[using (1.27)]

$$
\Rightarrow\left\{\begin{align*}
& l_{B_{i}}+l_{B_{i}} \beta_{r k} \delta a_{k s} \leq \tag{32}\\
& x_{B_{i}}+\left[x_{B_{i}} \beta_{r k}-\beta_{i k} x_{B_{r}}\right] \delta a_{k s} \leq \\
& u_{B_{i}}+\beta_{r k} u_{B_{i}} \delta a_{k s}
\end{align*}\right\}
$$

Inequality (31) implies that

$$
\begin{align*}
& \Rightarrow\left\{\left.\frac{x_{B_{r}}-l_{B_{r}}}{l_{B_{r}} \beta_{r k}} \right\rvert\, l_{B_{r}} \beta_{r k}<0\right\} \leq \delta a_{k s} \leq \tag{33}\\
&\left\{\left.\frac{x_{B_{r}}-l_{B_{r}}}{l_{B_{r}} \beta_{r k}} \right\rvert\, l_{B_{r}} \beta_{r k}>0\right\}
\end{align*}
$$

and

$$
\begin{align*}
& \Rightarrow\left\{\left.\frac{u_{B_{r}}-x_{B_{r}}}{-u_{B_{r}} \beta_{r k}} \right\rvert\, u_{B_{r}} \beta_{r k}>0\right\} \leq \delta a_{k s} \leq \tag{34}\\
&\left\{\left.\frac{u_{B_{r}}-x_{B_{r}}}{-u_{B_{r}} \beta_{r k}} \right\rvert\, u_{B_{r}} \beta_{r k}<0\right\}
\end{align*}
$$

First part of inequality (32) implies that

$$
\begin{align*}
\Rightarrow \max _{i, i \neq r}\left\{\left.\frac{x_{B_{i}}-l_{B_{i}}}{\gamma_{i}} \right\rvert\, \gamma_{i}<0\right\} \leq \delta a_{k s} \leq \tag{35}\\
\min _{i, i \neq r}\left\{\left.\frac{x_{B_{i}}-l_{B_{i}}}{\gamma_{i}} \right\rvert\, \gamma_{i}>0\right\}
\end{align*}
$$

where $\gamma_{i}=\beta_{i k} X_{B_{r}}-\beta_{r k}\left(x_{B_{i}}-l_{B_{i}}\right)$.
And second part of inequality (32) implies that

$$
\begin{align*}
& \Rightarrow \max _{i, i \neq r}\left\{\left.\frac{u_{B_{i}}-x_{B_{i}}}{\eta_{i}} \right\rvert\, \eta_{i}>0\right\} \leq \delta a_{k s} \leq \tag{37}\\
& \min _{\mathrm{i}, \mathrm{i} \neq r}\left\{\left.\frac{u_{B_{i}}-x_{B_{i}}}{\eta_{i}} \right\rvert\, \eta_{i}<0\right\}, \tag{38}
\end{align*}
$$

where $\eta_{i}=\beta_{i k} x_{B_{r}}-\beta_{r k}\left(x_{B_{i}}-u_{B_{i}}\right)$.
(33), (34), (35) and (37) together give the range of $\delta a_{k s}$ so that X_{B}^{\prime} is a feasible solution of new problem. Note that, if for some $i, u_{B_{i}}=\infty$, then for finding the range of $\delta a_{k s}$ for solution X_{B}^{\prime} to
be optimal, we do not consider the inequality (37) corresponding to that i.
$\underline{\text { Range of }} \delta a_{k s}$ for X_{B}^{\prime} to be optimal solution

$$
\begin{aligned}
& Z_{j}^{\prime}-C_{j}^{\prime}=Z_{j}^{\prime}-C_{j}=\sum_{i=1}^{m} C_{B_{i}} y_{i j}^{\prime}-C_{j} \\
& \quad=\sum_{i=1, i \neq r}^{m} C_{B_{i}}\left(y_{i j}-\frac{\lambda_{i}}{\lambda_{r}} y_{r j}\right)+C_{B_{r}} \frac{y_{r j}}{\lambda_{r}}-C_{j}
\end{aligned}
$$

(using (28))

$$
=\left[\begin{array}{l}
\left(\sum_{i=1}^{m} C_{B_{i}} y_{i j}-C_{j}\right)-C_{B_{r}} y_{r j}+ \\
C_{B_{r}} \frac{y_{r j}}{\lambda_{r}}-\frac{y_{r j}}{\lambda_{r}} \sum_{i=1, i \neq r}^{m} C_{B_{i}} \lambda_{i}
\end{array}\right]
$$

$$
=\left[\begin{array}{l}
\left(Z_{j}-C_{j}\right)-C_{B_{r}} y_{r j}\left(\frac{-1+\lambda_{r}}{\lambda_{r}}\right)- \\
\frac{y_{r j}}{\lambda_{r}} \sum_{i=1, i \neq r}^{m} C_{B_{i}} \lambda_{i}
\end{array}\right]
$$

$$
=\left(Z_{j}-C_{j}\right)-\frac{y_{r j}}{1+\beta_{r k} \delta a_{k s}} \sum_{i=1}^{m} C_{B_{i}} \beta_{i k} X_{B}^{\prime} \quad \text { will }
$$

$$
=\left(Z_{j}-C_{j}\right)-\frac{y_{r j} \delta a_{k s}}{1+\beta_{r k} \delta a_{k s}} C_{B} \overleftarrow{\beta}_{k} .
$$

be an optimal solution of new problem if

$$
\left.\begin{array}{l}
Z_{j}^{\prime}-C_{j}^{\prime} \geq 0 \forall a_{j} \in N_{1} \text { and } \\
Z_{j}^{\prime}-C_{j}^{\prime} \leq 0 \forall a_{j} \in N_{2}, \\
\left(Z_{j}-C_{j}\right)-\frac{y_{r j} \delta a_{k s}}{1+\beta_{r k} \delta a_{k s}} C_{B} \overleftarrow{\beta}_{k} \geq 0 \\
\forall a_{j} \in N_{1},
\end{array}\right\} \begin{aligned}
& \text { i.e. }\left\{\begin{array}{l}
\left(Z_{j}-C_{j}\right)+ \\
\delta a_{k s}\left[\beta_{r k}\left(Z_{j}-C_{j}\right)-y_{r j} C_{B} \overleftarrow{\beta}_{k}\right]
\end{array}\right\} \geq 0 . \\
& \Rightarrow \max _{a_{j} \in N_{1}}^{\left\{\left.-\frac{\left(Z_{j}-C_{j}\right)}{\alpha_{j}} \right\rvert\, \alpha_{j}>0\right\} \leq \delta a_{k s} \leq} \\
& \min _{a_{j} \in N_{1}}\left\{\left.-\frac{\left(Z_{j}-C_{j}\right)}{\alpha_{j}} \right\rvert\, \alpha_{j}<0\right\},
\end{aligned}
$$

where $\alpha_{j}=\beta_{r k}\left(Z_{j}-C_{j}\right)-y_{r j} C_{B} \overleftarrow{\beta}_{k}$.
For $a_{j} \in N_{2},\left(Z_{j}-C_{j}\right)+\delta a_{k s} \alpha_{j} \leq 0$ implies that,

$$
\begin{align*}
\Rightarrow & \max _{a_{j} \in N_{2}}\left\{\left.-\frac{\left(Z_{j}-C_{j}\right)}{\alpha_{j}} \right\rvert\, \alpha_{j}<0\right\} \leq \delta a_{k s} \leq \tag{41}\\
& \min _{a_{j} \in N_{2}}\left\{\left.-\frac{\left(Z_{j}-C_{j}\right)}{\alpha_{j}} \right\rvert\, \alpha_{j}>0\right\} .
\end{align*}
$$

Relations (38) and (40) together give the required range of $\delta a_{k s}$ for solution X_{B}^{\prime} to be optimal solution of new problem. And (38), (40),(33), (34), (35), (37) give the range of $\delta a_{k s}$ for solution X_{B}^{\prime} to be optimal as well as feasible solution of new problem

Remark 3: Solution of the problem when some $a_{s} \in B$ undergoes change

For simplicity, let X_{1} be the basic variable in the optimum basic vector X_{B} for (P). Suppose we have to modify first input-output coefficient say a_{11}, in the column vector a_{1} of x_{1} to a_{11}. The modified column vector of X_{1} will be

$$
a_{1}^{\prime}=\left(\begin{array}{lllll}
a_{11}^{\prime} & a_{21} & \cdots & a_{i 1} & \cdots
\end{array} a_{m 1}\right)^{T}
$$

Let x_{1}^{\prime} indicate the level of this activity corresponding to the new column vector a_{1}. The previous column vector a_{1} is no longer a part of the problem and it should be eliminated. Physically, x_{1} replaces x_{1} in the optimal tableau. This is same as addition of a variable and deletion of another. Construct a new problem by augmenting the present original tableau with new variable x_{1}^{\prime} with its column vector a_{1}^{\prime} and cost coefficient C_{1} and $l_{1} \leq x_{1}^{\prime} \leq u_{1}$. Also change the cost coefficient of x_{1} to $-M(+M$ in minimization case), where M is a very large positive number. This leads to the problem, which we call $\left(P^{\prime}\right)$. In this new problem x_{1} has high negative cost, so serves as an artificial variable. We can set X_{1}^{\prime} at its lower bound/upperbound and make changes in X_{B} and objective function value as discussed during the addition of new activity. While solving the problem there are three possibilities.
(i) Only optimality is hampered.
(ii) Only feasibility is hampered.
(iii) Optimality as well as feasibility both are hampered.

Case (iii) can be reduced to case (i) or (ii) by changing the level of x_{1} as discussed during the addition of a variable.

Case (i) In this case apply simplex algorithm and proceed. If X_{1} attains its lower bound which is zero now. As problem (P) is feasible and x_{1} is non-basic with $x_{1}=0$. Let $\left(\bar{x}_{1} \cdots \bar{x}_{n}, \bar{x}_{1}^{\prime}\right)$ be optimal basic feasible solution (OBFS) of (P^{\prime}).

Then ($\bar{x}_{2} \cdots \bar{x}_{n}, \bar{x}_{1}^{\prime}$) will be optimal basic feasible solution of the required problem say $\left(P^{*}\right)$. Let optimal objective function value of $\left(P^{\prime}\right)$ be Z and
$Z^{\prime}=\left\{\begin{array}{c}C_{B}\left(B^{-1} b\right)-\sum_{a_{j} \in N_{1}}\left(Z_{j}-C_{j}\right) l_{j} \\ -\sum_{a_{j} \in N_{2}}\left(Z_{j}-C_{j}\right) u_{j}\end{array}\right\}$.
Then optimal objective function value of the required problem, $Z^{*}=Z^{\prime}+\left(Z_{1}-C_{1}\right) l_{1}=Z^{\prime}$, since $l_{1}=0$.

If X_{1} is still basic and can be replaced, then replace it and delete its column from the optimal table. Otherwise the required problem will be infeasible (Murty, 1976).

Case (ii) Apply dual simplex algorithm till dual optimality or primal infeasibility criterion is satisfied. If (P^{\prime}) is feasible, then proceed as in case (i), otherwise required problem is also infeasible.

4 Concluding Remarks

Other changes like change in cost vector C, change in requirement vector b, addition of a variable and addition of a constraint can be easily discussed on the same line as for these three cases. In the previous discussion, we have considered change only in one element of matrix
A. But the method, discussed above can be used to solve the problem when we consider more than one change in an activity vector. Similarly, Change in a row vector (more than one element at a time) is equivalent to addition of one constraint and deletion of another. Similarly change in a column vector (more than one element at a time) is equivalent to addition of one variable and deletion of another.

5 Numerical Illustration

(P) Maximize $\mathrm{Z}=3 x_{1}+5 x_{2}+3 x_{3}$
subject to $\quad x_{1}+2 x_{2}+x_{3} \leq 19$,

$$
2 x_{1}+4 x_{2}+3 x_{3} \leq 33
$$

where $1 \leq x_{1} \leq 5,2 \leq x_{2} \leq 7,0 \leq x_{3} \leq 1$.
Solution: Optimal feasible solution of the problem (P) is $X^{0}=(5,23 / 4,0)$ and $Z=175 / 4$. Optimal table showing this solution is:

Table 1

$\mathrm{L}^{*} \rightarrow \mathrm{u}_{1}$	b	l_{3}	b	l_{5}	
$C_{j} \rightarrow$		5	5	3	0

$\begin{array}{llllllll}C_{B} & \text { В } & X_{B} & y_{1} & y_{2} & y_{3} & y_{4} & y_{5}\end{array}$
$\begin{array}{llllllll}0 & a_{4} & 5 / 2 & 0 & 0 & -1 / 2 & 1 & -1 / 2\end{array}$

5	a_{2}	$23 / 4$	$1 / 2$	1	$3 / 4$	0	$1 / 4$

$\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}} \rightarrow \quad-1 / 2 \quad 0 \quad 3 / 4 \quad 0 \quad 5 / 4$
$Z=175 / 4$
(L^{*} denotes the level of the variable in the solution.)

Deletion of a variable

(i) Deletion of a non-basic variable.

Let in table $1, x_{1}=u_{1}$ be dropped, then

$$
\begin{gathered}
X_{B}^{\prime}=X_{B}+Y_{1} u_{1}=\binom{5 / 2}{23 / 4}+\binom{0}{1 / 2}(5)=\binom{5 / 2}{33 / 4} \\
Z^{\prime}=\frac{175}{4}-\frac{1}{2} \times 5=\frac{165}{4}
\end{gathered}
$$

Here optimality is hampered as $x_{2}=33 / 4>u_{2}$. As x_{1} is non-basic so on deleting the column Y_{1} in table 1, we have

$\mathrm{L} \rightarrow \mathrm{b}$	l_{3}	b	l_{5}

$$
C_{j} \rightarrow 5 \quad 3 \quad 0 \quad 0
$$

C_{B}	B	X_{B}	y_{2}	y_{3}	y_{4}	y_{5}

$\begin{array}{lllllll}0 & a_{4} & 5 / 2 & 0 & -1 / 2 & 1 & -1 / 2\end{array}$

5	a_{2}	$33 / 4$	1	$3 / 4$	0
$Z_{j}-C_{j} \rightarrow$	0	$3 / 4$	0	$5 / 4$	

Z=165/4

As $x_{2}=33 / 4>7$, so it departs and x_{3} enters the basis. Applying dual simplex algorithm repeatedly optimal solution of perturbed problem is given by

$\mathrm{L} \rightarrow \mathrm{u}_{2}$	u_{3}	b	b			
$C_{j} \rightarrow$	5	3	0	0		
C_{B}	B	X_{B}	y_{2}	y_{3}	y_{4}	y_{5}
0	a_{4}	4	2	1	1	0
0	a_{5}	2	4	3	0	1
$Z_{j}-C_{j} \rightarrow$	-5	-3	0	0		
$\mathrm{Z}=38$						

(ii) Deletion of a basic variable.

Let $a_{2}=b_{2} \in B$ be deleted. Here we consider that $x_{2} \geq 0$, so it serves as an artificial variable. Also $C_{2} \rightarrow-M$. From table 1 , making changes in $Z_{j}-C_{j}$ and Z accordingly, we have following table

L	\rightarrow	u_{1}	b	l_{3}	b	l_{5}	
$C_{j} \rightarrow$	3	-M	3	0	0		
C_{B}	B	X_{B}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
0	a_{4}	$5 / 2$	0	0	$-1 / 2$	1	$-1 / 2$
-M	a_{2}	$23 / 4$	$1 / 2$	1	$3 / 4$	0	$1 / 4$
$Z_{j}-C_{j} \rightarrow$	$-\mathrm{M} / 2-3$	0	$-3 \mathrm{M} / 4-3$	0	$-\mathrm{M} / 4$		
$Z=(-23 M$							
Z							

As $Z_{3}-C_{3}<0$, so x_{3} undergoes change. Applying simplex algorithm

| $\mathrm{L} \rightarrow \mathrm{u}_{1}$ | b | l_{3} | b | l_{5} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $C_{j} \rightarrow 3$ | -M | 3 | 0 | 0 | $\begin{array}{llllllll}C_{B} & \mathrm{~B} & X_{B} & y_{1} & y_{2} & y_{3} & y_{4} & y_{5}\end{array}$

0	a_{4}	3	0	0	$-1 / 2$	1	$-1 / 2$

$-\mathrm{M} a_{2} 5$	$1 / 2$	1	$3 / 4$	0	$1 / 4$
$Z_{j}-C_{j} \rightarrow$	$-\mathrm{M} / 2-3$	0	$-3 \mathrm{M} / 4-3$	0	$-\mathrm{M} / 4$

Again $Z_{5}-C_{5}<0$, so X_{5} undergoes change. Applying simplex algorithm again, we have

$\mathrm{L} \rightarrow \mathrm{u}_{1}$	b	l_{3}	b	l_{5}		
$C_{j} \rightarrow 3$	-M	3	0	0		
C_{B} В X_{B}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	
0	a_{4}	13	1	2	1	1
0	$a_{5} 20$	2	4	3	0	1
$Z_{j}-C_{j} \rightarrow$	-3	M	-3	0	0	

So the solution in above table is optimal and x_{2} in non-basic and at lower bound, so on deleting Y_{2}, optimal solution of the perturbed problem is $Z^{\prime}=18$ and $X^{\prime}=(5,1)$.

Deletion of a constraint

(i) Deletion of an inactive constraint.

As $x_{4}=5 / 2>0$, so first constraint is inactive. So to find the optimal solution of the perturbed problem, we delete the column Y_{4} and first row from table 1 and there will be no change in X_{B}, Z and $Z_{j}-C_{j}$.
(ii) Deletion of an active constraint.

In problem (P), second constraint is active. To make it inactive, change $C_{5}(=0) \rightarrow M$ and calculate $Z_{5}^{\prime}-C_{5}^{\prime}$ in Table 1.
\qquad

L	$\rightarrow \mathrm{u}_{1}$	b	l_{3}	b	l_{5}	
$C_{j} \rightarrow 3$	5	3	0	M		
C_{B}	B	X_{B}	y_{1}	y_{2}	y_{3}	y_{4}
0	a_{4}	$5 / 2$	0	0	$-1 / 2$	1
y_{5}						
5	a_{2}	$23 / 4$	$1 / 2$	1	$3 / 4$	0
$Z_{j}-C_{j}$	$\rightarrow-1 / 2$	0	$3 / 4$	0	$5 / 4-\mathrm{M}$	

$Z=175 / 4$.

As $Z_{5}^{\prime}-C_{5}^{\prime}<0$, so X_{5} undergoes change.
Applying simplex algorithm repeatedly, we have

$\mathrm{L} \rightarrow \mathrm{l}_{1}$	l_{2}	l_{3}	b	b		
$C_{j} \rightarrow 3$	5	3	0	M		
C_{B} В X_{B}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	
0	$a_{4} 14$	1	2	1	1	0
M $a_{5} 23$	2	4	3	0	1	

$Z_{j}-C_{j} \rightarrow 2 \mathrm{M}-34 \mathrm{M}-5 \quad 3 \mathrm{M}-3 \quad 0 \quad 0$
$\mathrm{Z}=13+23 \mathrm{M}$

Note that $x_{5}>0$, so second constraint is inactive. On deleting Y_{5} and second row in the above table and also making changes in Z and $Z_{j}-C_{j}$, we have the following table

	$\mathrm{L} \rightarrow \mathrm{l}_{1}$	l_{2}	l_{3}	b	
	$C_{j} \rightarrow 3$	5	3	0	
C_{B}	B X_{B}	y_{1}	y_{2}	y_{3}	y_{4}
0	$a_{4} \quad 14$	1	2	1	1

$Z_{j}-C_{j} \rightarrow$	-3	-5	-3	0
$\mathrm{Z}=13$				

This solution in above table is feasible but not optimal, so applying simplex algorithm repeatedly; the optimal solution of the perturbed problem is given by

	L	\rightarrow	u_{1}	b	u_{3}	l_{4}
C_{j}	\rightarrow	3	5	3	0	
C_{B}	B	X_{B}	y_{1}	y_{2}	y_{3}	y_{4}
0	a_{2}	6	$1 / 2$	1	$1 / 2$	$1 / 2$
$\mathrm{Z}=51, Z_{j}-C_{j}$	$\rightarrow-1 / 2$	0	$-1 / 2$	$5 / 2$		

Change in \underline{A}

(i) Let $a_{1} \notin B$ undergoes change and $a_{11} \rightarrow a_{11}+\delta a_{11}$. Here $s=1, k=1$. When
a_{11} changes then X_{B}, Z and only $Z_{1}-C_{1}$ undergo change as discussed earlier.
$B^{-1}=\left(\begin{array}{cc}1 & -1 / 2 \\ 0 & 1 / 4\end{array}\right), C_{B}=\left(\begin{array}{ll}0 & 5\end{array}\right)$.
$\Rightarrow C_{B} \overleftarrow{\beta}_{1}=0$.
Range of δa_{11} for maintaining optimality is given by

$$
\begin{aligned}
& \left\{\left.-\frac{\left(Z_{1}-C_{1}\right)}{C_{B} \overleftarrow{\beta}_{1}} \right\rvert\, C_{B} \overleftarrow{\beta}_{1}>0\right\} \leq \delta a_{11} \leq \\
& \{
\end{aligned}\left\{\left.-\frac{\left(Z_{1}-C_{1}\right)}{C_{B} \overleftarrow{\beta}_{1}} \right\rvert\, C_{B} \overleftarrow{\beta}_{1}<0\right\} .
$$

Since $C_{B} \overleftarrow{\beta}_{1}=0$, so new solution will be optimal for all values of δa_{11}.

Range of δa_{11} for maintaining feasibility is given by

$$
\begin{gathered}
\max _{i}\left\{\begin{array}{l}
\left(\left.\frac{x_{B_{i}}-l_{B_{i}}}{\beta_{i 1} u_{1}} \right\rvert\, \beta_{i 1} u_{1}<0\right), \\
\left(\left.\frac{u_{B_{i}}-x_{B_{i}}}{-\beta_{i 1} u_{1}} \right\rvert\, \beta_{i 1} u_{1}>0\right)
\end{array}\right\} \leq \delta a_{11} \leq \\
\min _{i}\left\{\begin{array}{l}
\left(\left.\frac{u_{B_{i}}-x_{B_{i}}}{-\beta_{i 1} u_{1}} \right\rvert\, \beta_{i 1} u_{1}<0\right), \\
\left(\left.\frac{x_{B_{i}}-l_{B_{i}}}{\beta_{i 1} u_{1}} \right\rvert\, \beta_{i 1} u_{1}>0\right)
\end{array}\right\} .
\end{gathered}
$$

$\beta_{11} u_{1}=5>0, \beta_{21} u_{1}=0$.
For $i=1$, we have $-\infty \leq \delta a_{11} \leq 1 / 2$, and for $i=2$, solution is feasible for all values of δa_{11}. Thus range of δa_{11} for maintaining optimality as well as feasibility is

$$
-\infty \leq \delta a_{11} \leq 1 / 2
$$

Let $\delta a_{11}=3$, then feasibility will be hampered.
$X_{B}^{\prime}=\binom{5 / 2}{23 / 4}-\binom{1}{0} 5=\binom{-1 / 2}{23 / 4}, Z^{\prime}=175 / 4$.
$Z_{1}^{\prime}-C_{1}^{\prime}=\left(Z_{1}-C_{1}\right)+0=-1 / 2$,
$Y_{1}^{\prime}=Y_{1}+\overleftarrow{\beta}_{1} \delta a_{11}=\binom{0}{1 / 2}+\binom{1}{0} 3=\binom{3}{1 / 2}$.

$\mathrm{L} \rightarrow \mathrm{u}_{1}$	b	l_{3}	b	l_{5}		
$C_{j} \rightarrow 3$	5	3	0	0		
C_{B}	В X_{B}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
0	a_{4}	$-1 / 2$	3	0	$-1 / 2$	1

$\begin{array}{lllllll}5 & a_{2} 23 / 4 & 1 / 2 & 1 & 3 / 4 & 0 & 1 / 4\end{array}$

$Z_{j}-C_{j} \rightarrow$	$-1 / 2$	0	$3 / 4$	0	$5 / 4$

$Z=175 / 4$
$\overline{\text { As } x_{4}<0 \text {, so it departs. Applying dual simplex }}$ method, OBFS of perturbed problem will be given by
\qquad

$\mathrm{L} \rightarrow \mathrm{b}$		b	l_{3}	l_{4}	l_{5}
$C_{j} \rightarrow 3$	5	3	0	0	
C_{B} B X_{B}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
$3 \quad \begin{array}{lll}1 & 29 / 6\end{array}$	1	0	-1/6	1/3	-1/6
$5 \quad a_{2} 35 / 6$	0	1	5/6	-1/6	1/3
$Z_{j}-C_{j} \rightarrow$	0	0	2/3	1/6	7/6

$Z=131 / 3$

(ii) Let $a_{2}=b_{2} \in B$ undergoes change and $a_{22} \rightarrow a_{22}+\delta a_{22}$. Here $r=2, k=2$. When δa_{22} undergoes change, let $X_{B} \rightarrow X_{B}^{\prime}$.

Range of δa_{22} for solution X_{B}^{\prime} to be optimal solution of the perturbed problem, for $i=2, r=2, l_{B_{2}} \beta_{22}=1 / 2>0$,
$u_{B_{2}} \beta_{22}=7 / 4>0$.

$$
\begin{aligned}
& \Rightarrow\left\{\left.\frac{x_{B_{2}}-l_{B_{2}}}{l_{B_{2}} \beta_{22}} \right\rvert\, l_{B_{2}} \beta_{22}<0\right\} \leq \delta a_{22} \leq \\
&\left\{\left.\frac{x_{B_{2}}-l_{B_{2}}}{l_{B_{2}} \beta_{22}} \right\rvert\, l_{B_{2}} \beta_{22}>0\right\}
\end{aligned}
$$

and
$\Rightarrow\left\{\left.\frac{u_{B_{2}}-x_{B_{2}}}{-u_{B_{2}} \beta_{22}} \right\rvert\, u_{B_{2}} \beta_{22}>0\right\} \leq \delta a_{22} \leq$

$$
\left\{\left.\frac{u_{B_{2}}-x_{B_{2}}}{-u_{B_{2}} \beta_{22}} \right\rvert\, u_{B_{2}} \beta_{22}<0\right\}
$$

$\Rightarrow-\frac{5}{7} \leq \delta a_{22} \leq \frac{15}{2}$.
For $i=1$,
$\gamma_{1}=\beta_{12} x_{B_{2}}-\beta_{22}-\beta_{22}\left(x_{B_{1}}-l_{B_{1}}\right)=-\frac{7}{2}<0$,

Note that inequality (37) is not used here as $u_{B_{1}}=\infty$.
$\Rightarrow-\frac{5}{7} \leq \delta a_{22}$.
Combining (41) and (42), range of δa_{22} for solution X_{B}^{\prime} to be feasible is
$\Rightarrow-\frac{5}{7} \leq \delta a_{22} \leq \frac{15}{2}$.
Range of δa_{22} to be optimal:
$\alpha_{j}=\beta_{22}\left(Z_{j}-C_{j}\right)-y_{2 j}\left(C_{B} \overleftarrow{\beta}_{2}\right)$,
$C_{B} \overleftarrow{\beta}_{2}=\frac{5}{4}$.
$N_{1}=\left\{a_{3}, a_{5}\right\}, N_{2}=\left\{a_{1}\right\}$.
$\alpha_{1}=\beta_{22}\left(Z_{1}-C_{1}\right)-y_{21}\left(C_{B} \overleftarrow{\beta}_{2}\right)=-\frac{1}{8}$,
$\alpha_{3}=\beta_{22}\left(Z_{3}-C_{3}\right)-y_{23}\left(C_{B} \overleftarrow{\beta}_{2}\right)=-\frac{3}{4}$,
and $\alpha_{5}=\beta_{22}\left(Z_{5}-C_{5}\right)-y_{25}\left(C_{B} \overleftarrow{\beta}_{2}\right)=0$.
$\max \left\{\begin{array}{l}\left(\left.-\frac{\left(Z_{j}-C_{j}\right)}{\alpha_{j}} \right\rvert\, \alpha_{j}>0, a_{j} \in N_{1}\right), \\ \left(\left.-\frac{\left(Z_{j}-C_{j}\right)}{\alpha_{j}} \right\rvert\, \alpha_{j}<0, a_{j} \in N_{2}\right)\end{array}\right\}$

$$
\leq \delta a_{r k} \leq
$$

$\min \left\{\begin{array}{l}\left(\left.-\frac{\left(Z_{j}-C_{j}\right)}{\alpha_{j}} \right\rvert\, \alpha_{j}<0, a_{j} \in N_{1}\right), \\ \left(\left.-\frac{\left(Z_{j}-C_{j}\right)}{\alpha_{j}} \right\rvert\, \alpha_{j}>0, a_{j} \in N_{2}\right)\end{array}\right\}$.
Thus X_{B}^{\prime} will be optimal if
$-4 \leq \delta a_{22} \leq 1$
From (43) and (44), range of δa_{22} for solution X_{B}^{\prime} to be OBFS of the perturbed problem is
$-\frac{5}{7} \leq \delta a_{22} \leq 1$.
Let $\delta a_{22}=2$. For solving the problem, make $x_{2} \geq 0$ and introduce a new variable x_{2}^{\prime} with $C_{2}=5$ and $2 \leq x_{2}^{\prime} \leq 7$.

Set $x_{2}^{\prime}=I_{2}^{\prime}=2$, then $Z_{2}^{\prime}-C_{2}^{\prime}=5 / 2$ and $X_{B}^{\prime}=X_{B}-Y_{2}^{\prime} l_{2}$.
$a_{2}^{\prime}=\binom{2}{6}, Y_{2}^{\prime}=\left(\begin{array}{cc}1 & -1 / 2 \\ 0 & 1 / 4\end{array}\right)\binom{2}{6}=\binom{-1}{3 / 2}$.
$\Rightarrow X_{B}^{\prime}=\binom{5 / 2}{23 / 4}-\binom{-1}{3 / 2}(2)=\binom{9 / 2}{11 / 4}$.
$Z^{\prime}=Z-\left(Z_{2}^{\prime}-C_{2}^{\prime}\right) l_{2}^{\prime}=\frac{175}{4}-\frac{5}{2} \times 2=\frac{155}{4}$.

From table 1,
$\begin{array}{llllll}\mathrm{L} \rightarrow \mathrm{u}_{1} & \mathrm{~b} & \mathrm{l}_{3} & \mathrm{~b} & \mathrm{l}_{5} & \mathrm{l}_{2}^{\prime} \\ C_{j} \rightarrow 3 & 5 & 3 & 0 & 0 & 5\end{array}$
$\begin{array}{llllllll}C_{B} & \text { B } & X_{B} & y_{1} & y_{2} & y_{3} & y_{4} & y_{5}\end{array} y_{2}^{\prime}$

0	$a_{4} 9 / 2$	0	0	$-1 / 2$	1	$-1 / 2$	-1

5	a_{2}	$11 / 4$	$1 / 2$	1	$3 / 4$	0	$1 / 4$
$3 / 2$							
$Z_{j}-C_{j} \rightarrow$	$-1 / 2$	0	$3 / 4$	0	$5 / 4$	$5 / 2$	

Z=155/4
This solution is optimal as well as feasible. Now we delete X_{2}.

On changing $C_{2}=5 \rightarrow-M$ and calculate $Z, Z_{j}-C_{j}, \forall a_{j}$, in above table

$\mathrm{L} \rightarrow \mathrm{u}_{1}$	b	l_{3}	b	l_{5}	l_{2}^{\prime}			
$C_{j} \rightarrow 3$	-m	3	0	0	5			
C_{B} в X_{B}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{2}^{\prime}		
0	a_{4}	$9 / 2$	0	0	$-1 / 2$	1	$e^{-1 / 2}$	-1
:---								

$\begin{array}{lllllll}-\mathrm{M} & a_{2} 11 / 4 & 1 / 2 & 1 & 3 / 4 & 0 & 1 / 4\end{array}$
$Z_{j}-C_{j} \rightarrow-\mathrm{M} / 2-30-3 \mathrm{M} / 4-30-\mathrm{M} / 4,-3 \mathrm{M} / 2-5$
$Z=25-11 \mathrm{M} / 4$

As $Z_{2}^{\prime}-C_{2}^{\prime}<0$, so x_{2}^{\prime} undergoes change.
Applying simplex algorithm repeatedly, we get the following table

Acknowledgement

The authors acknowledge the financial support provided by University Grant Commission, Government of India.

References

[1] Pu Cai, Jin-Yi Cai, "On the 100\% rule of sensitivity analysis in linear programming", Computing and Combinatorics(Shanghai, 1997), 460-469, Lecture Notes in Comput. Sci. 1276, Springer, Berlin, 1997.
[2] V. Cavatal, Linear Programming. Freeman and Co. 1983.
[3] G.B. Dantzig, Linear Programming and Extensions. Princeton University Press, Princeton, N.J., 1963.
[4] G.B. Dantzig, " Note on linear programming: Parts VIII, IX,X- Upper bounds, secondary constraints an block triangularity in linear programming, The RAND Corporation, research

Memorandum RM-1367, October 4, 1954. Published in Econometrica, 23(April), no.2, 174183.
[5] C. Duguay, M. Todd and H.M. Wagner, "Linear programming with relative bounded variables", Management Sci. 19 751-759, 1972/73.
[6] G. Finke, " A modified bounded variable algorithm", Proceedings of the Ninth Manitoba Conference on Numerical Mathematics and Computing(Univ. Manitoba, Winnipeg, Man.,), 193-199, 1979.
[7] Tien kung Ho, "A revised simplex algorithm for linear programming with bounded variables", Tamsui Oxford J. Management Sci. 71-27,1991.
[8] Md. T. Hossain, T.K. Pal, "An alternative method for solving LPP with bounded variables", Bull. Pure Appl. Sci. Sect. E Math. Stat. 19 no. 2 411-420,2000.
[9] K. Swarup, P.K. Gupta , Man Mohan, Operations Research. Sultan Chand \& Sons,2000.
[10] K.G. Murty, Linear and Combinatorial programming. John Wiley \& Sons, INC, New York, London, Sydney, Toronto,1976.
[11] I. Maros, "A generalised dual phase-2 simplex algorithm", European Journal of Operational Research 149 1-16,2002.
[12] Frantis Sek Turnvec, "A modification of the decomposition algorithm for solving linear programming with upper bounded variables", Ekonom.-Mat. Obzor 4 351-358,1968.
[13] H.M. Wagner, "The dual simplex algorithm for bounded variables", Naval Res. Logist. Quart. 5 257-261, 1958.
[14] James E. Ward, Richard E. Wendell, "Approaches to sensitivity analysis in linear programming", Ann. Oper. Res. 27, no.1-4,3-38, 1990.
[15] E. Alpher Yildirim, Michael J. Todd, "Sensitivity analysis in linear programming and semidefinite programming using interior-point method", Math. Program., 90, no.2, Ser. A, 229261,2001.

[^0]: *Department of Mathematics, Panjab University,

