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Abstract  
 
Aircraft flight testing is employed to 
evaluate an aircraft's performance; 
identifying design concepts, problems and 
deficiencies.  The process involves the 
collection and recording of data such as 
speed, altitude, and pressure, which is then 
telemetered to the ground for analysis. The 
process of recording data; a set of 
parameters of varying lengths that are 
sampled at certain rates requires the 
construction of Telemetry Data Cycle Maps.  
A brief overview of a set covering Integer 
Programming formulation and a novel 
Divide-and-Conquer approach to generate 
Telemetry Maps will be discussed.  In 
addition, a comparison of the relative 
efficiencies of the two algorithms using 
realistic data sets is presented. 

 
Introduction 
 
The process of aircraft flight testing requires 
the aircraft to be fitted with special 
instrumentation and execute a pre-planned 
test mission.  The mission includes the 
collection of data (parameters) that need to 
be sampled at certain rates as requested by 
a customer.  Customers are generally 
interested in flight safety and performance 
data.  During a mission, samples are 
acquired from sensors, positioned 
accordingly within a data structure; data 
cycle map (DCM), and transmitted to a 
ground receiving station.  The actual frame 
structure is known as a major frame, which 
is comprised of one or more fixed length 
rows called minor frames.   Prior to the 
construction of a DCM, a uniform global 
word length must be selected.  Typically 
word lengths from 8 to 32 bits are used and 
the map is then divided into slots of this 
length.  Each parameter requested for 
testing has a required sampling rate; 
number of times it must be sampled per 
second, and size; number of words it will 
occupy when it appears in the DCM.  

Parameters that appear at least once per 
minor frame are known as 
supercommutated samples.  While those 
that do not appear on every minor frame, 
but at least once per major frame are 
considered to be subcommutated samples. 
 
The Inter Range Instrument Group (IRIG) 
[1] has developed a set of standard 
requirements for the construction of DCMs.  
A number of the essential requirements are:  
 
• Parameters must be positioned 

periodically on the DCM according to 
their required sample rate and word 
length.   

• All minor and major frames begin with 
frame synchronisation words and contain 
a frame identification word (frame id).  

• A minor frame length can be up to 8192 
bits in total. 

• The number of minor frames per major 
frame is limited to 256.  

 
At present DCMs are constructed using 
computer based manual systems such as 
FTIMS [6]. The construction of DCMs is 
considered to be complex, costly and time 
consuming.  Additionally, as customer 
demands are becoming increasingly more 
complex the number of requirements to be 
sampled is growing. One map may take 
several weeks to generate and require 
more than one flight for the collection of 
data.  Hence the generation of efficient 
DCMs has received a considerable amount 
of attention.  Recently a software package, 
AutoTelemTM has been developed by 
QUEST Integrated Inc. [2] using a local 
search procedure to generate near optimal 
DCMs.  This package has been 
commissioned by the United States 
Airforce. 
      
In this paper, the process of DCM 
construction employing a Divide-and-
Conquer approach and a set covering 
Integer Programming model will be  



 

discussed. Furthermore, the results 
produced from a comparative study on the 
relative efficiency of the set covering 
technique and the Divide-and-Conquer 
approach are presented. 
 
Frame Design and Efficiency 
 
Formulating a DCM requires determining 
the size of the minor frames and the 
corresponding efficiency required to 
position each parameter periodically using 
a given sample rate.  In addition to the 
previously mentioned IRIG constraints there 
are bit rate limits, consistent with a 
minimum bit rate of 10 and maximum bit 
rate of 5 million.  The frame design process 
begins with the selection of a common 
global word size, globalw, where each map 
is divided into “slots” of this length.  This 
word size can be from 8 to 32 bits.  The 
problem then becomes to select a frame 
size such that the total number of empty 
slots is minimised.  
      
There are normally numerous options 
available in the design of a frame for any 
given set of parameters, however what is 
required is the most efficient. Frame 
efficiency E, is measured as follows: 
 

nfbtsrequiredbiE /= , 
 
where  requiredbits is the minimum size of 
the DCM (in bits) if each parameter was 
positioned using its minimum required 
sample rate and did not need to be periodic, 
and nfb corresponds to the bit rate of the 
final designed DCM.  Each parameter type 
i  has three values associated with it; ir , 
the required sample rate in samples per 
second; id , the number of signals; and iw , 
the number of words required. Thus, 
requiredbits can be written as 
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The value of nfb is given by  
 

globalwmflmfrnfb **= , 
 

where mfr and mfl represent the minor 
frame rate or number of minor frames per 
second and minor frame length (in words), 
respectively. Therefore, the efficiency 
becomes 
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It is necessary to note that the 
synchronisation and frame id words are 
included in nfb, but not in requiredbits.  
      
Hence, to calculate the size of a DCM and 
its corresponding efficiency value for a set 
of parameters, it is necessary to ascertain 
the following primary attributes: 
 
• minor frame rate; 
• minor frames per major frame; 
• words per minor frame; 
• bits per word; and 
• actual sampling rates for each  

parameter type. 
 
In order to demonstrate the process of 
finding the necessary attributes, consider 
the data set illustrated in Table 1 and 
assume that globalw = 16. It is necessary to 
note that the rates are required to be in 
ascending order. 
 
 

ir  id  iw  
1 4 1 
2 2 1 
6 1 1 
13 2 1 

 
Table 1  An Eight-Parameter Data Set Divided into   
Four Data Rate Classes for Example 1. 

 
 

Minor Frame Rate 
 
The number of data rate classes is N (4).  
Select one of the sample rates, kr  (say 

22 =r ), as the minor frame rate, mfr.  
Thus, the minor frame will be repeated 2 
times per second.  A number of the IRIG 
constraints are considered in the selection 
of the minor frame rate: the minimum and 
maximum bit transmission rates and 
maximum minor frames per major frame 
must not be exceeded.  
 

Number of Minor Frames per Major Frame 
 
Divide each of the data rates by kr  to 
produce the following vector, 
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The kth element, kr / kr  is 1, the elements to 
the left of it are less than 1 and those to the 
right are greater than 1.  Furthermore, 
elements to the right, representing the 
supercommutated parameters, must be 
integers in order to supercommutate 
properly within the minor frame, and those 
to the left must have a numerator of 1 and 
be inverted in order to represent the 
allowable subcommutated rates.   Elements 
to the right that are not integers are 
rounded up and elements to the left with a 
numerator not equal to 1 are rescaled. 
Thus, producing a vector of 
subcommutated and supercommutated 
sample rates, 
 

( ) ( )7,3,1,2,...,, 21 =Nppp , 
 
where supercommutated parameter 
i occurs ip  times per minor frame and 
subcommutated parameter j occurs once 

every jp  minor frames.  For example, 
subcommutated parameter 1 occurs once 
every 2 minor frames.  Supercommutated 
parameter 4 occurs 7 times per minor frame 
and although it has a required sample rate 
of 13 times per second, actually appears 14 
times per second, as each minor frame is 
repeated 2 times per second. 
      
The number of minor frames per major 
frame, nmf, is the least common multiple 
(LCM) of the subcommutation rates,  
 

.2)1,2(),...,,( 21 === LCMpppLCMnmf k

  
This value guarantees that the 
subcommutated parameters are periodically  
placed. 
 

Words per Minor Frame 
 
The number of words per minor frame, mfl, 
consists of the synchronisation and frame id 
words plus the number of words required to 
accommodate the subcommutated and 
supercommutated parameters.  In order to 
ensure periodicity for each 
supercommutated parameter, each 
supercommutated minor frame rate must 
divide the minor frame length.  Thus, the 
nominal length may need to be increased to 
the nearest multiple of the LCM of the 

supercommutated parameters.   In general 
the space required by the subcommutated 
parameters is given by 
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The number of words required by the 
supercommutated parameters is given by 
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Therefore using the above example, the 
number of words required by the 
subcommutated and supercommutated 
parameters is 2 and 19 respectively.  
Assuming 2 synchronisation words and 1 
frame id word, a total of 24 nominal words 
is required.  However, as 74 =p does not 
divide 24, this value is increased to the 
nearest multiple of )7,3(LCM which is 
greater than 24. Consequently, the number 
of words per minor frame or the length of 
each minor frame is 42=mfl .  The 
efficiency of this DCM construction would 
be 46.43%, as the required bit rate is 624 
and the designed bit rate is 1344.   
      
A number of factors may affect the 
efficiency value, 
 
• The amount of rounding required to 

determine the supercommutated minor 
frame rates which lead to oversampling 
or wasted space. 

• The difference between the nominal 
and final minor frame length required to 
ensure the periodicity of 
supercommutated data. 

• The selection of the minor frame rate to 
satisfy the periodicity of subcommutated 
parameters.  

 
Recall that this frame design has been 
determined on the basis of selecting 

2=kr , however, 3 other options are also 
available in this example. 
      
In summary, the technique selects a range 
of minor frame rates.  At each candidate 
rate, subcommutation and 
supercommutation rates are estimated and 
adjusted to produce feasible words per 
minor frame and minor frames per major 
frame, according to the IRIG constraints.  A 
value of efficiency is calculated for each 



 

possible DCM construction.  It follows that 
the aim is to select a minor frame rate and 
the adjusted data rates in order to generate 
the most efficient DCM conforming to the 
IRIG requirements.  Several factors may 
influence this process.  
 
1. For very large data sets, all or many of 

the choices may violate the maximum 
minor frame length of 8192 bits. In this 
case if possible a less efficient frame 
design is chosen which does not 
require this number of bits.   

 
2. The data set may exceed the total bit 

rate maximum of 5 million or the 
maximum number of minor frames per 
major frame, and hence no DCM can 
be constructed.   

 
3. No solution can be found for the highest 

efficiency despite (1) and (2) not 
occurring and a frame design with lower 
efficiency is tried.   

 
Case 3 deals with certain nonconforming 
examples where placement of parameters 
on a chosen efficient frame is impossible 
without avoiding placement coincidence.  
The overlap of parameters causes the use 
of a less efficient frame construction.  This 
case is discussed in detail in [3]. 
 

Set Covering Integer Programming 
Model 
 
The ensuing approach uses a set covering 
Integer Programming model (DCM-Opt) to 
construct DCMs.  DCM-Opt considers the 
construction of a minor frame to generate 
an entire DCM.  Once a minor frame is 
established, it is replicated to construct a 
major frame.   
 
The process of generating a minor frame is 
based on the principal of “packing” 
parameters into a frame while minimising 
the number of unused words and 
maintaining periodicity within the major 
frame. As the length, mfl, has been 
determined, it is used to enumerate the set 
of all possible placements within the minor 
frame for each parameter type.  
 
Consider each placement pattern as a tour. 
The aim of DCM-Opt is to choose a tour for 
each parameter, not allowing any overlap 
within the DCM.  Periodicity is ensured 
automatically during the generation of the 
tours.  The problem is to minimise the 
amount of unused space or  
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where ix is 1 if column i is chosen, and 0 

otherwise, ika is 1 if parameter i covers 

position k and 0 otherwise, and ks  is a 

slack variable for frame position k which is 
equivalent to 1 if position k is not covered.   
 
The tours can be divided into subsets iS for 
each parameter and constraint 2 ensures 
that exactly one tour is selected per subset.  
Savings in the number of variables can be 
made since parameters with the same 
minor frame sample rate and word 
requirements will have identical tour sets 
and can be grouped into parameter classes 
with tours generated for each class. The 
minor frame map is reconstructed by 
arbitrarily assigning the members of each 
class to each tour. 
      
DCM-Opt was implemented using C and 
the optimisation code CPLEXTM 7.0 as the 
solver. 
 

Divide-and-Conquer Model 
 
The following model employs a Divide-and- 
Conquer (DaC) approach to generate 
DCMs.  As with DCM-Opt, DaC generates a 
minor frame in order to construct an entire 
DCM.  The minor frame is replicated 
according to the final required number of 
minor frames per major frame, nmf.   
 
The fundamental principle of the Divide-
and-Conquer paradigm is to divide and 
solve several smaller problems, combining 
their outcomes to form a complete solution.  
Typically the Divide-and-Conquer concept 
can be employed when solving a large or 
difficult problem.  The original strategy of 
Divide-and-Conquer is to  
 
• Divide:  Divide the problem into similar 

subproblems (generally of equal size); 
 
• Conquer:  Solve each subproblem 

either directly or recursively; and 



 

• Combine:  Combine the subproblems’ 
solutions to create a single global 
solution. 

 
The DaC model applies an innovative 
version of the traditional Divide-and-
Conquer paradigm to construct optimal or 
near-optimal DCMs.   
 
The aforementioned DCM-Opt requires an 
a priori process to find an efficient mfl. 
However, this method can not guarantee a 
feasible mfl will be chosen.  The selection 
may include coincident placement of 
parameters.  Thus, the mfl option would be 
deemed infeasible, a less efficient mfl would 
need to be considered, and the placement 
process recreated.    
 
Consequently, the DaC model evolved in an 
attempt to develop a simple, robust DCM 
generating process for all requirements 
sets.  The process can be demonstrated 
with five key steps, using the example given 
in Table 2; 4=n  parameter classes and 

2rrk = ( 5= ). 
 
 

ir  id  iw  ip  
1 1 1 5 
5 3 1 1 
6 3 1 2 
25 1 1 5 

 
Table 2  An Eight-Parameter Data Set Divided into   
Four Data Rate Classes for Example 2. 

 
1. Apply the preprocessing method 

described earlier to calculate the “initial” 
minor frame rates, ip  and nominal 

minor frame length, nmfl . Thus, if 

2rrk = ( 5= ) then .20=nmfl  
 
2. (a)  Divide all supercommutated rates 

by the smallest supercommutated rate, 
)2(3 == pdivisor  using 

⎥⎥
⎤

⎢⎢
⎡= divisor
padjustedp i

i  to produce 

column 5 in Table 3. 
 
 
 
 
 
 
 
 
 

ir  id  iw  ip  iadjustedp
1 1 1 5  
5 3 1 1  
6 3 1 2 1 
25 1 1 6 3 

 
Table 3  Example 2 Data Set, including the first   
level adjustedpi values.  

 
(b) Modify the original 
supercommutated rates to incorporate 
the rounding factor using 

divisoradjustedpp ii ∗= . 
 

(c)  Calculate a new minor frame length 
)24(=  corresponding to the new ip  

values. 
 

3. Reapply step 2 to the iadjustedp  rates 
until the column contains only one 
element, as can be seen in Table 4. 

 
 

ir  id  iw  ip  iadjustedp   

1 1 1 5   
5 3 1 1   
6 3 1 2 1  
25 1 1 6 3 1 

 
Table 4  Example 2 Data Set, including the second   
level adjustedpi values.  

 
 
Therefore, from the initial ,20=nmfl  the 
final .24=mfl   The minor frame was first 
divided into 2 subframes of lenth 12 (first 
round of step 2).  The subframe of length 12 
was then further divided into 3 subframes of 
length 4. 
 
4. (a)  Capture the commutated sample 

(parameter 8 from parameter class 4) 
for the smallest subsubframe from the 
final column, 6 in Table 4. 

 
(b)  Randomly place these parameters 
in available slots within the 
subsubframe. 
 
 
     8 
 

 
This small frame is repeated 3 times to 
produce the subframe of length 12.   
 
 
 



 

It is necessary to note that space must 
still exist for synchronisation words (say 
2) at the beginning of the frame and a 
frame id anywhere within the frame. 
 
 
 
 

Thus, the aim of the model is to 
continue to divide the nominal minor 
frame until the smallest subframe is 
generated with only commutated 
samples.   
 
 
 
 

 
 
                                              8                        8                        8 

 
 
 

5. Repeat step 3 to capture the 
commutated samples (5, 6, and 7) for 
the subframe (length 12) from column 5 
(Table 4).  These commutated samples 
are randomly placed in available slots 
in the subframe. 

 

 
 
 

The minor frame is then rebuilt by 
adding in the previous commutated 
samples, subframe by subframe. 

 
 
 

 
                                            8                         8     5           6    8     7 
                                       

 
 

The subframe is then repeated twice 
producing a minor frame. 
 
 
 

 
Consequently, an algorithm has been 
formulated that ensures the production 
of feasible efficient DCMs for all 
requirements sets. 

 
      

 
 
                 8                        8     5           6    8     7                 8                        8     5           6     8    7 

 
 
 
6. Repeat step 3 to capture the 

commutated samples (2, 3, and 4) for 
the minor frame (length 24) from 
column 4 (Table 4).  These 
commutated samples are placed using 
the remaining slots in the minor frame. 
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Results of the Comparative Analysis 
 
A total of 2292 data sets were analysed in 
this study.  These comprise of a cross 
section of data ranging from 6352 to 
416832  
total bit requirements.  Originally a slightly 
larger collection of sets was considered, 
however this contained several data sets 
that violated the maximum IRIG limits.  All 
data sets were supplied by the United 
States Airforce. 

 
 
These graphs represent the average 
efficiency as a function of size of the 
required bits. To facilitate easy comparison 
of results, output was sorted in order of 
increasing required bits and the efficiency 
values averaged over batches of size 100 
(except for the last which was of size 92).   
It can be seen that the relative efficiency for 
both DCM-Opt and DaC is in the high 
ranges, above 90% for most data sets. 

Typically the DCM-Opt model locates an 
efficient, feasible minor frame length for a 
given DCM requirements set within a small 
amount of CPU time.  However, for some 
data sets, as stated earlier, coincidence 
occurs.  Thus, an alternative Divide-and-
Conquer formulation was investigated, 
DaC, to build a DCM without requiring its 
final length to be known a priori, by taking 
advantage of the array structure associated 
with Telemetry Maps. 
 
DCM-Opt and DaC are compared in terms 
of their relative frame design efficiency, 
using the averaged efficiencies over 
batches.   
 
Efficiency 
 
The relative efficiency of the two algorithms 
is depicted in Figure 1. 
 
 

DaC generally requires some oversampling 
of the original minor frame rates due to the 
dividing of the minor frame into subframes.  
However, there is a certain amount of 
oversampling that occurs when generating 
the minor frame sample rates initially for 
both DCM-Opt and DaC.  Thus, the 
additional oversampling does not affect the 
ability of DaC to construct efficient DCMs.  
The two methods produce DCM telemetry 
frames with nearly identical efficiencies. 
 
All results were generated on a PC with 
clock speed 733 MHz and were run under 
Red Hat Linux v6.2. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 1  Average efficienct for DCM-Opt and DaC, over batches of 100 darta sets, ordered in size of increasing 
bit requirements. 
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Conclusion 
 
Operations Research techniques, 
particularly Integer Programming, have 
often been employed to solve real-world 
problems in defence related research.  The 
prevalence of heuristic techniques is 
increasing with the complexity and diversity 
of the problems that arise.  Dealing with 
such complex real-world problems requires 
the consideration of efficacy, effectiveness 
and efficiency [5], in order to produce robust 
approaches that are able to be utilised 
successfully.   
 
The primary outcome associated with the 
construction of Data Cycle Maps was the 
development of automated, comparative 
Integer Programming  and Divide-and- 
Conquer models able to generate feasible 
efficient maps while complying with a set of 
telemetry standards. 
 
Furthermore, it has been shown that DaC, 
using the simple Divide-and-Conquer 
paradigm, is comparable with the set 
covering Integer Programming model, 
DCM-Opt.  DaC is able to generate as 
efficient telemetry frames for realistic data 
sets.  The motivation behind developing 
DaC was to illustrate that simple methods 
can be effective in solving complicated 
problems. 
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