

A Novel Divide-and-Conquer Approach to Data Cycle Map Construction
Maria Johna and David Pantonb

a Land Operations Division, Defence Science and Technology Organisation, West Avenue, Edinburgh, South Australia, Australia
(Email: maria.john@defence.gov.au)

b Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes, South Australia, Australia
(Email: david.panton@unisa.edu.au)

Abstract

Aircraft flight testing is employed to
evaluate an aircraft's performance;
identifying design concepts, problems and
deficiencies. The process involves the
collection and recording of data such as
speed, altitude, and pressure, which is then
telemetered to the ground for analysis. The
process of recording data; a set of
parameters of varying lengths that are
sampled at certain rates requires the
construction of Telemetry Data Cycle Maps.
A brief overview of a set covering Integer
Programming formulation and a novel
Divide-and-Conquer approach to generate
Telemetry Maps will be discussed. In
addition, a comparison of the relative
efficiencies of the two algorithms using
realistic data sets is presented.

Introduction

The process of aircraft flight testing requires
the aircraft to be fitted with special
instrumentation and execute a pre-planned
test mission. The mission includes the
collection of data (parameters) that need to
be sampled at certain rates as requested by
a customer. Customers are generally
interested in flight safety and performance
data. During a mission, samples are
acquired from sensors, positioned
accordingly within a data structure; data
cycle map (DCM), and transmitted to a
ground receiving station. The actual frame
structure is known as a major frame, which
is comprised of one or more fixed length
rows called minor frames. Prior to the
construction of a DCM, a uniform global
word length must be selected. Typically
word lengths from 8 to 32 bits are used and
the map is then divided into slots of this
length. Each parameter requested for
testing has a required sampling rate;
number of times it must be sampled per
second, and size; number of words it will
occupy when it appears in the DCM.

Parameters that appear at least once per
minor frame are known as
supercommutated samples. While those
that do not appear on every minor frame,
but at least once per major frame are
considered to be subcommutated samples.

The Inter Range Instrument Group (IRIG)
[1] has developed a set of standard
requirements for the construction of DCMs.
A number of the essential requirements are:

• Parameters must be positioned

periodically on the DCM according to
their required sample rate and word
length.

• All minor and major frames begin with
frame synchronisation words and contain
a frame identification word (frame id).

• A minor frame length can be up to 8192
bits in total.

• The number of minor frames per major
frame is limited to 256.

At present DCMs are constructed using
computer based manual systems such as
FTIMS [6]. The construction of DCMs is
considered to be complex, costly and time
consuming. Additionally, as customer
demands are becoming increasingly more
complex the number of requirements to be
sampled is growing. One map may take
several weeks to generate and require
more than one flight for the collection of
data. Hence the generation of efficient
DCMs has received a considerable amount
of attention. Recently a software package,
AutoTelemTM has been developed by
QUEST Integrated Inc. [2] using a local
search procedure to generate near optimal
DCMs. This package has been
commissioned by the United States
Airforce.

In this paper, the process of DCM
construction employing a Divide-and-
Conquer approach and a set covering
Integer Programming model will be

discussed. Furthermore, the results
produced from a comparative study on the
relative efficiency of the set covering
technique and the Divide-and-Conquer
approach are presented.

Frame Design and Efficiency

Formulating a DCM requires determining
the size of the minor frames and the
corresponding efficiency required to
position each parameter periodically using
a given sample rate. In addition to the
previously mentioned IRIG constraints there
are bit rate limits, consistent with a
minimum bit rate of 10 and maximum bit
rate of 5 million. The frame design process
begins with the selection of a common
global word size, globalw, where each map
is divided into “slots” of this length. This
word size can be from 8 to 32 bits. The
problem then becomes to select a frame
size such that the total number of empty
slots is minimised.

There are normally numerous options
available in the design of a frame for any
given set of parameters, however what is
required is the most efficient. Frame
efficiency E, is measured as follows:

nfbtsrequiredbiE /= ,

where requiredbits is the minimum size of
the DCM (in bits) if each parameter was
positioned using its minimum required
sample rate and did not need to be periodic,
and nfb corresponds to the bit rate of the
final designed DCM. Each parameter type
i has three values associated with it; ir ,
the required sample rate in samples per
second; id , the number of signals; and iw ,
the number of words required. Thus,
requiredbits can be written as

∑
=

=
N

i
iii globalwwdrtsrequiredbi

1

)***(

The value of nfb is given by

globalwmflmfrnfb **= ,

where mfr and mfl represent the minor
frame rate or number of minor frames per
second and minor frame length (in words),
respectively. Therefore, the efficiency
becomes

)*/()**(
1
∑
=

=
N

i
iii mflmfrwdrE .

It is necessary to note that the
synchronisation and frame id words are
included in nfb, but not in requiredbits.

Hence, to calculate the size of a DCM and
its corresponding efficiency value for a set
of parameters, it is necessary to ascertain
the following primary attributes:

• minor frame rate;
• minor frames per major frame;
• words per minor frame;
• bits per word; and
• actual sampling rates for each

parameter type.

In order to demonstrate the process of
finding the necessary attributes, consider
the data set illustrated in Table 1 and
assume that globalw = 16. It is necessary to
note that the rates are required to be in
ascending order.

ir id iw
1 4 1
2 2 1
6 1 1
13 2 1

Table 1 An Eight-Parameter Data Set Divided into
Four Data Rate Classes for Example 1.

Minor Frame Rate

The number of data rate classes is N (4).
Select one of the sample rates, kr (say

22 =r), as the minor frame rate, mfr.
Thus, the minor frame will be repeated 2
times per second. A number of the IRIG
constraints are considered in the selection
of the minor frame rate: the minimum and
maximum bit transmission rates and
maximum minor frames per major frame
must not be exceeded.

Number of Minor Frames per Major Frame

Divide each of the data rates by kr to
produce the following vector,

().2/13,2/6,2/2,2/1,...,, 21 =⎟
⎠
⎞⎜

⎝
⎛

k

N

kk r
r

r
r

r
r

The kth element, kr / kr is 1, the elements to
the left of it are less than 1 and those to the
right are greater than 1. Furthermore,
elements to the right, representing the
supercommutated parameters, must be
integers in order to supercommutate
properly within the minor frame, and those
to the left must have a numerator of 1 and
be inverted in order to represent the
allowable subcommutated rates. Elements
to the right that are not integers are
rounded up and elements to the left with a
numerator not equal to 1 are rescaled.
Thus, producing a vector of
subcommutated and supercommutated
sample rates,

() ()7,3,1,2,...,, 21 =Nppp ,

where supercommutated parameter
i occurs ip times per minor frame and
subcommutated parameter j occurs once

every jp minor frames. For example,
subcommutated parameter 1 occurs once
every 2 minor frames. Supercommutated
parameter 4 occurs 7 times per minor frame
and although it has a required sample rate
of 13 times per second, actually appears 14
times per second, as each minor frame is
repeated 2 times per second.

The number of minor frames per major
frame, nmf, is the least common multiple
(LCM) of the subcommutation rates,

.2)1,2(),...,,(21 === LCMpppLCMnmf k

This value guarantees that the
subcommutated parameters are periodically
placed.

Words per Minor Frame

The number of words per minor frame, mfl,
consists of the synchronisation and frame id
words plus the number of words required to
accommodate the subcommutated and
supercommutated parameters. In order to
ensure periodicity for each
supercommutated parameter, each
supercommutated minor frame rate must
divide the minor frame length. Thus, the
nominal length may need to be increased to
the nearest multiple of the LCM of the

supercommutated parameters. In general
the space required by the subcommutated
parameters is given by

∑
−

=
⎥
⎥

⎤
⎢
⎢

⎡1

1

k

i i

i
i p

dw .

The number of words required by the
supercommutated parameters is given by

∑
=

N

ki
iii wdp ** .

Therefore using the above example, the
number of words required by the
subcommutated and supercommutated
parameters is 2 and 19 respectively.
Assuming 2 synchronisation words and 1
frame id word, a total of 24 nominal words
is required. However, as 74 =p does not
divide 24, this value is increased to the
nearest multiple of)7,3(LCM which is
greater than 24. Consequently, the number
of words per minor frame or the length of
each minor frame is 42=mfl . The
efficiency of this DCM construction would
be 46.43%, as the required bit rate is 624
and the designed bit rate is 1344.

A number of factors may affect the
efficiency value,

• The amount of rounding required to

determine the supercommutated minor
frame rates which lead to oversampling
or wasted space.

• The difference between the nominal
and final minor frame length required to
ensure the periodicity of
supercommutated data.

• The selection of the minor frame rate to
satisfy the periodicity of subcommutated
parameters.

Recall that this frame design has been
determined on the basis of selecting

2=kr , however, 3 other options are also
available in this example.

In summary, the technique selects a range
of minor frame rates. At each candidate
rate, subcommutation and
supercommutation rates are estimated and
adjusted to produce feasible words per
minor frame and minor frames per major
frame, according to the IRIG constraints. A
value of efficiency is calculated for each

possible DCM construction. It follows that
the aim is to select a minor frame rate and
the adjusted data rates in order to generate
the most efficient DCM conforming to the
IRIG requirements. Several factors may
influence this process.

1. For very large data sets, all or many of

the choices may violate the maximum
minor frame length of 8192 bits. In this
case if possible a less efficient frame
design is chosen which does not
require this number of bits.

2. The data set may exceed the total bit

rate maximum of 5 million or the
maximum number of minor frames per
major frame, and hence no DCM can
be constructed.

3. No solution can be found for the highest

efficiency despite (1) and (2) not
occurring and a frame design with lower
efficiency is tried.

Case 3 deals with certain nonconforming
examples where placement of parameters
on a chosen efficient frame is impossible
without avoiding placement coincidence.
The overlap of parameters causes the use
of a less efficient frame construction. This
case is discussed in detail in [3].

Set Covering Integer Programming
Model

The ensuing approach uses a set covering
Integer Programming model (DCM-Opt) to
construct DCMs. DCM-Opt considers the
construction of a minor frame to generate
an entire DCM. Once a minor frame is
established, it is replicated to construct a
major frame.

The process of generating a minor frame is
based on the principal of “packing”
parameters into a frame while minimising
the number of unused words and
maintaining periodicity within the major
frame. As the length, mfl, has been
determined, it is used to enumerate the set
of all possible placements within the minor
frame for each parameter type.

Consider each placement pattern as a tour.
The aim of DCM-Opt is to choose a tour for
each parameter, not allowing any overlap
within the DCM. Periodicity is ensured
automatically during the generation of the
tours. The problem is to minimise the
amount of unused space or

minimise ,∑

k
ks

subject to 1≤+∑ ki

i
ik sxa k∀ (1)

 ∑
∈

=
iSr

r 11 i∀ (2)

where ix is 1 if column i is chosen, and 0

otherwise, ika is 1 if parameter i covers

position k and 0 otherwise, and ks is a

slack variable for frame position k which is
equivalent to 1 if position k is not covered.

The tours can be divided into subsets iS for
each parameter and constraint 2 ensures
that exactly one tour is selected per subset.
Savings in the number of variables can be
made since parameters with the same
minor frame sample rate and word
requirements will have identical tour sets
and can be grouped into parameter classes
with tours generated for each class. The
minor frame map is reconstructed by
arbitrarily assigning the members of each
class to each tour.

DCM-Opt was implemented using C and
the optimisation code CPLEXTM 7.0 as the
solver.

Divide-and-Conquer Model

The following model employs a Divide-and-
Conquer (DaC) approach to generate
DCMs. As with DCM-Opt, DaC generates a
minor frame in order to construct an entire
DCM. The minor frame is replicated
according to the final required number of
minor frames per major frame, nmf.

The fundamental principle of the Divide-
and-Conquer paradigm is to divide and
solve several smaller problems, combining
their outcomes to form a complete solution.
Typically the Divide-and-Conquer concept
can be employed when solving a large or
difficult problem. The original strategy of
Divide-and-Conquer is to

• Divide: Divide the problem into similar

subproblems (generally of equal size);

• Conquer: Solve each subproblem

either directly or recursively; and

• Combine: Combine the subproblems’
solutions to create a single global
solution.

The DaC model applies an innovative
version of the traditional Divide-and-
Conquer paradigm to construct optimal or
near-optimal DCMs.

The aforementioned DCM-Opt requires an
a priori process to find an efficient mfl.
However, this method can not guarantee a
feasible mfl will be chosen. The selection
may include coincident placement of
parameters. Thus, the mfl option would be
deemed infeasible, a less efficient mfl would
need to be considered, and the placement
process recreated.

Consequently, the DaC model evolved in an
attempt to develop a simple, robust DCM
generating process for all requirements
sets. The process can be demonstrated
with five key steps, using the example given
in Table 2; 4=n parameter classes and

2rrk = (5=).

ir id iw ip
1 1 1 5
5 3 1 1
6 3 1 2
25 1 1 5

Table 2 An Eight-Parameter Data Set Divided into
Four Data Rate Classes for Example 2.

1. Apply the preprocessing method

described earlier to calculate the “initial”
minor frame rates, ip and nominal

minor frame length, nmfl . Thus, if

2rrk = (5=) then .20=nmfl

2. (a) Divide all supercommutated rates

by the smallest supercommutated rate,
)2(3 == pdivisor using

⎥⎥
⎤

⎢⎢
⎡= divisor
padjustedp i

i to produce

column 5 in Table 3.

ir id iw ip iadjustedp
1 1 1 5
5 3 1 1
6 3 1 2 1
25 1 1 6 3

Table 3 Example 2 Data Set, including the first
level adjustedpi values.

(b) Modify the original
supercommutated rates to incorporate
the rounding factor using

divisoradjustedpp ii ∗= .

(c) Calculate a new minor frame length
)24(= corresponding to the new ip

values.

3. Reapply step 2 to the iadjustedp rates
until the column contains only one
element, as can be seen in Table 4.

ir id iw ip iadjustedp

1 1 1 5
5 3 1 1
6 3 1 2 1
25 1 1 6 3 1

Table 4 Example 2 Data Set, including the second
level adjustedpi values.

Therefore, from the initial ,20=nmfl the
final .24=mfl The minor frame was first
divided into 2 subframes of lenth 12 (first
round of step 2). The subframe of length 12
was then further divided into 3 subframes of
length 4.

4. (a) Capture the commutated sample

(parameter 8 from parameter class 4)
for the smallest subsubframe from the
final column, 6 in Table 4.

(b) Randomly place these parameters
in available slots within the
subsubframe.

 8

This small frame is repeated 3 times to
produce the subframe of length 12.

It is necessary to note that space must
still exist for synchronisation words (say
2) at the beginning of the frame and a
frame id anywhere within the frame.

Thus, the aim of the model is to
continue to divide the nominal minor
frame until the smallest subframe is
generated with only commutated
samples.

 8 8 8

5. Repeat step 3 to capture the
commutated samples (5, 6, and 7) for
the subframe (length 12) from column 5
(Table 4). These commutated samples
are randomly placed in available slots
in the subframe.

The minor frame is then rebuilt by
adding in the previous commutated
samples, subframe by subframe.

 8 8 5 6 8 7

The subframe is then repeated twice
producing a minor frame.

Consequently, an algorithm has been
formulated that ensures the production
of feasible efficient DCMs for all
requirements sets.

 8 8 5 6 8 7 8 8 5 6 8 7

6. Repeat step 3 to capture the

commutated samples (2, 3, and 4) for
the minor frame (length 24) from
column 4 (Table 4). These
commutated samples are placed using
the remaining slots in the minor frame.

 H H 8 8 5 6 8 7 2 8 3 8 5 4 6 8 7

Results of the Comparative Analysis

A total of 2292 data sets were analysed in
this study. These comprise of a cross
section of data ranging from 6352 to
416832
total bit requirements. Originally a slightly
larger collection of sets was considered,
however this contained several data sets
that violated the maximum IRIG limits. All
data sets were supplied by the United
States Airforce.

These graphs represent the average
efficiency as a function of size of the
required bits. To facilitate easy comparison
of results, output was sorted in order of
increasing required bits and the efficiency
values averaged over batches of size 100
(except for the last which was of size 92).
It can be seen that the relative efficiency for
both DCM-Opt and DaC is in the high
ranges, above 90% for most data sets.

Typically the DCM-Opt model locates an
efficient, feasible minor frame length for a
given DCM requirements set within a small
amount of CPU time. However, for some
data sets, as stated earlier, coincidence
occurs. Thus, an alternative Divide-and-
Conquer formulation was investigated,
DaC, to build a DCM without requiring its
final length to be known a priori, by taking
advantage of the array structure associated
with Telemetry Maps.

DCM-Opt and DaC are compared in terms
of their relative frame design efficiency,
using the averaged efficiencies over
batches.

Efficiency

The relative efficiency of the two algorithms
is depicted in Figure 1.

DaC generally requires some oversampling
of the original minor frame rates due to the
dividing of the minor frame into subframes.
However, there is a certain amount of
oversampling that occurs when generating
the minor frame sample rates initially for
both DCM-Opt and DaC. Thus, the
additional oversampling does not affect the
ability of DaC to construct efficient DCMs.
The two methods produce DCM telemetry
frames with nearly identical efficiencies.

All results were generated on a PC with
clock speed 733 MHz and were run under
Red Hat Linux v6.2.

Figure 1 Average efficienct for DCM-Opt and DaC, over batches of 100 darta sets, ordered in size of increasing
bit requirements.

0.7
0.75

0.8
0.85

0.9
0.95

1

63
52

12
79

2
22

07
2
28

27
2
38

07
2
46

76
8
55

76
8
63

56
8
75

12
8
87

35
2
99

91
2

11
13

44

12
84

80

15
06

40

17
35

68

19
69

60

23
71

04

31
37

44

43
24

72

Median Batch Size (Required Bits)

A
ve

ra
ge

 E
ffi

ci
en

cy

DCM-Opt DaC

Conclusion

Operations Research techniques,
particularly Integer Programming, have
often been employed to solve real-world
problems in defence related research. The
prevalence of heuristic techniques is
increasing with the complexity and diversity
of the problems that arise. Dealing with
such complex real-world problems requires
the consideration of efficacy, effectiveness
and efficiency [5], in order to produce robust
approaches that are able to be utilised
successfully.

The primary outcome associated with the
construction of Data Cycle Maps was the
development of automated, comparative
Integer Programming and Divide-and-
Conquer models able to generate feasible
efficient maps while complying with a set of
telemetry standards.

Furthermore, it has been shown that DaC,
using the simple Divide-and-Conquer
paradigm, is comparable with the set
covering Integer Programming model,
DCM-Opt. DaC is able to generate as
efficient telemetry frames for realistic data
sets. The motivation behind developing
DaC was to illustrate that simple methods
can be effective in solving complicated
problems.

References

[1] Telemetry Group, Range Commanders
Council, IRIG Standard 106-96, Telemetry
Standards, Secretariate, Range
Commanders Councul, U.S Army White
Sands Missile Range, NM, May 1996.

[2] T.C. Folsom and P.D. Bondurant,
“Automatic Telemetry Frame Formatting,”
Proceedings of the 44th International
Instrumentation Symposium, 1998.

[3] D. Panton, M. John, S. Lucas and A.
Mason, “Flight Test Data Cycle Map
Optimisation”, European Journal of
Operational Research, vol 146, pp 48-497,
2003.

[4] D. Panton, M. John and S. Lucas, “Flight
Test Data Cycle Map Optimisation”, 4th
ITEA Workshop, 2000.

[5] J.V. Rosenhead and J. Mingers,
Rational Analysis for a Problematic World
Revisited, John Wiley & Sons, Chichester,
UK, 2001.

[6] M. M Samaan, “Data Management of
Flight Test Telemetry Frames”, Masters
Thesis, University of South Australia, 1998.

