"Operational Research is the application of the methods of science to complex problems arising in the direction and management of large systems of men, machines, materials and money in industry, business government and defence. The distinctive approach is to develop a scientific model of the system, incorporating measurements of factors such as chance and risk, with which to predict and compare the outcomes of alternative decisions, strategies or controls. The purpose is to help management determine its policy and actions scientifically."

Operational Research Society

ASOR NATIONAL PRESIDENT:
Prof Erhan Kozan
School of Mathematical Sciences
QUT, Brisbane
Queensland

ADMINISTRATIVE VICE-PRESIDENT:
Dr Andrew Higgins
CSIRO Sustainable Ecosystems
Level 3, QBP, 306 Carmody Road, St. Lucia
Queensland

EDITORIAL BOARD:
Dr Ruhul Sarker (Editor)
Prof Lou Caccetta
Prof Erhan Kozan
Prof Pra Murthy
A/Prof Baikunth Nath
Prof Charles Newton
Prof Charles Pearce
A/Prof Moshe Sniedovich
Dr Yakov Zinder

r.sarker@adfa.edu.au
ccacetta@maths.curtin.edu.au
e.kozan@qut.edu.au
murthy@mech.uq.oz.au
baikunth@unimelb.edu.au
c.newton@adfa.edu.au
cpearce@maths.adelaide.edu.au
moshe@tincan.ms.unimelb.edu.au
Yakov.zinder@uts.edu.au

CHAPTER CHAIRPERSONS AND SECRETARIES

QUEENSLAND:
Chairperson: Dr Andrew Higgins
Secretary: Dr Robert Burdett
School of Math. Sciences
QUT, GPO Box 2434
Brisbane QLD 4001

SYDNEY:
Chairperson: Dr Layna Groen
Secretary: Mr Philip Neame
Dept. of Math. Sciences
UTS, PO Box 123
Broadway NSW 2007

WESTERN AUSTRALIA:
Chairperson: Prof. Louis Caccetta
Secretary: Dr L. Giannini
School of Mathematics and Statistics, Curtin Uni. Of Tech.
GPO Box U1987
Perth WA 6001

SOUTH AUSTRALIA:
Chairperson: Dr Emma Hunt (Acting)
Secretary: Dr Emma Hunt
PO Box 143
Rundle Mall
Adelaide SA 5001

MELBOURNE:
Chairperson: A/Prof. Baikunth Nath
Secretary: Dr Patrick Tobin
School of Math. Science
SUT, PO Box 218
Hawthorn VIC 3122

ACT:
Chairperson: Dr David Wood
Secretary: Dr Philip Kilby
RSISE, Building 115
North Road, ANU
Acton ACT 2601

ISSN 0812-860X Publisher: The Australian Society for Operations Research Inc.
Place of Publication: Canberra, Australia Year of Publication: 2008 Copyright year: 2008
Editorial

In this issue, S. Jain, P. Advani and M. Kumar have contributed a technical paper on *An inventory model for Weibull distribution deterioration with allowable shortage under cash discount and permissible delay in payments*. We are delighted to be publishing the paper here for Bulletin readers.

I am pleased to inform you that the electronic version of ASOR Bulletin is now available at the ASOR national web site: http://www.asor.org.au/. Currently, the electronic version is prepared only as one PDF. We like to thank our web-master Dr Andy Wong for his hard work in redesigning and smoothly managing our national web site. In September alone, our web site has about 950 visitors and 3400 page requests logged. Your comments on the new electronic version, as well as ASOR national web site, is welcome.

ASOR Bulletin is the only national publication of ASOR. I would like to request all ASOR members, ASOR Bulletin readers and OR organizations in the country to contribute to the ASOR Bulletin. The editorial policy is available either from the Bulletin web site or from the inside back cover of the Bulletin. The detailed instructions for preparing the manuscripts is available in the URL: http://www.asor.org.au/.

Address for sending contributions to the ASOR Bulletin:

Ruhul A Sarker
Editor, ASOR Bulletin
School of ITEE, UNSW@ADFA
Northcott Drive, Canberra 2600
Australia
Email: r.sarker@adfa.edu.au
An Inventory Model for Weibull Distribution Deterioration with Allowable Shortage under Cash Discount and Permissible Delay in Payments

Sanjay Jaina, Priya Advanib and Mukesh Kumarc

Abstract
The inventory theory has undergone a profound structural transformation in the last few decades. The trade credit/cash discount scheme revolution has expanded well beyond the cutting-edge high-tech industrial sector redefining the rules of global competition. Numerous studies have been undertaken to explain inventory models with different features. While findings from earlier studies have been conflicting, recent industrial-level studies indicate that multi-features inventory models has a positive impact on business scenario. We propose an inventory model with integration of many real features like two-parameter Weibull distribution deterioration allowing shortages under cash discount scheme and permissible delay in payments. A numerical example is taken to illustrate the application of developed models and to examine the sensitivity of model parameters.

Key Words: Weibull distribution, Permissible delay in payments, Trade credit, Cash discount, Deterioration, Shortage.

Introduction
The traditional inventory models were developed under the assumption that payment will be made to the suppliers immediately on receipt of the consignment. But in real life, suppliers allow some grace period/credit facilities before they settle account with the retailers. In such a case no interest is charged if the account is settled within the permissible delay period. Beyond this period the supplier will charge interest. Such a benefit motivates the retailers to order more quantity because delay in payment indirectly reduces the purchase cost of the items. However, if the items in the inventory system deteriorate, ordering large quantities would not be economical. Owing to this fact, during the past few years, many articles dealing with models under trade credit have appeared in various research journals.

In the above mentioned models, cash discount factor is not taken into consideration. The supplier often provides its customers a cash discount so as to motivate payment as early as possible, stimulate sales, or reduce credit expenses. The retailer can obtain cash discount if the payment is

a Department of Mathematical Sciences, Government Post Graduate College, Affiliated to M. D. S. University, Ajmer, Ajmer-305 001, India, Email: drjainsanjay@gmail.com
b Department of Mathematics, Government Mahila Engineering College, Ajmer, India
c Department of Mathematics, Government College, Kishangarh, India
made within cash discount period offered by the supplier. Otherwise, the retailer will have to pay
full payment within the trade credit period.

Many inventory models under cash discount policy and delay in payments can be found in Chang
by assuming that the retailer pays the supplier the sales revenue when items are sold. Huang et
al. (2007) investigated the cash where the retailer's unit selling price and the purchasing price per
unit are not necessarily equal within the economic production quantity (EPQ) framework under
cash discount and permissible delay in payments.

In this paper we develop an inventory model for deteriorating items with two-parameter Weibull
distribution deterioration allowing shortages under cash discount and permissible delay in
payments. This paper is organized as follows. In section 2 assumptions and notations are
presented. In section 3 the mathematical model is formulated. In section 4 algorithm is stated. In
section 5 numerical examples are cited and sensitivity analysis of the optimal solution with
respect to parameters of the system is carried out.

Assumptions and Notations

Inventory model is developed under following assumptions and notations:

Assumptions

• Replenishment rate is infinite.
• The lead-time is zero.
• The rate of deterioration at any time \(t \) follows the two-parameter Weibull distribution:
 \[Z(t) = \alpha \beta t^{\beta-1}, \]
 where \(\alpha (0 < \alpha < 1) \) is the scale parameter and \(\beta (> 0) \) is the
 shape parameter.
• Inventory level remains non-negative for a time \(t_1 \) in each cycle after which shortages are
 allowed and unsatisfied demand is backlogged at the rate \(\delta \).
• Supplier offers cash discount if payment is made within time \(M_1 \); otherwise the full
 payment is due within time \(M_2 \).

Notations

\(c_1 \) = set-up cost.
\(c_2 \) = per unit holding cost excluding interest charges.
\(c_3 \) = shortage cost per unit per unit time.
\(c_4 \) = opportunity cost due to lost sales per unit.
\(c_5 \) = deterioration cost per unit per unit time.
\(c \) = item cost per unit.
\(R \) = demand rate per unit per unit time.
\(Q \) = order quantity per cycle.
\(I(t) \) = inventory level at time.
\(I_e \) = interest earned per unit time.
\(I_p \) = interest paid per unit time.
\(r \) = cash discount rate.
\(M_1 \) = period of cash discount.
\(M_2 \) = last time of permissible delay (for settling the accounts \(M_2 > M_1 \)).
$T = \text{length of replenishment cycle.}$

$T_i = \text{length of positive inventory period.}$

$(T^a_1, T^a) = \text{optimal value of } (T_1, T) \text{ in case 1.1.}$

$(T^b_1, T^b) = \text{optimal value of } (T_1, T) \text{ in case 1.2.}$

$(T^c_1, T^c) = \text{optimal value of } (T_1, T) \text{ in case 1.3.}$

$(T^d_1, T^d) = \text{optimal value of } (T_1, T) \text{ in case 1.4.}$

Model Formulation

The system starts with Q units of on-hand inventory. Depletion of inventory occurs due to combined effects of demand and deterioration in the interval $0 < t < T_1$. Demand is partially backlogged in the interval, $T_1 < t < T$. Variation of inventory level $I(t)$ at any time t is given by

$$\frac{d I(t)}{d t} + \alpha \beta t^{\beta-1} I(t) = -R \quad ; 0 \leq t \leq T_1 \quad - - - (1)$$

$$\frac{d I(t)}{d t} = -\delta R \quad ; T_1 \leq t \leq T \quad - - - (2)$$

The solutions of (1) and (2) with the boundary condition are respectively

$$I(T) = R \left((T_1 - t) - \alpha (T \beta - t \beta^{+1}) + \frac{\alpha}{\beta + 1} (T^{\beta+1} - t^{\beta+1}) \right) \quad ; 0 \leq t \leq T_1 \quad - - - (3)$$

$$I(t) = \delta R (T_1 - t) \quad ; T_1 \leq t \leq T \quad - - - (4)$$

Thus the order quantity per cycle is

$$Q = I(0) + \delta R (T - T_1)$$

$$= R \left((1 - \delta) T_1 + \frac{\alpha}{\beta + 1} T^{\beta+1} + T \delta \right) \quad - - - (5)$$

Since the supplier offers a premium of cash discount, there are two payment policies for the retailer:

1. Payment is made at time M_1 to get the cash discount (Case 1)
2. Payment is made at time M_2 not to get the cash discount (Case 2)

These two cases are as follows:

Case 1. Payment is made at time M_1

Case 1.1 $M_1 < T_1$

In this case the length of the positive stock period is larger than the period of cash discount.
Inventory level

\[
\begin{align*}
\text{Lost Sales} \\
\text{Case 1.1 } M_1 < T_i
\end{align*}
\]

The components of total cost are calculated as follows.

(a) The setup cost per setup is fixed at \(c_s \).

(b) Holding cost during the interval \([0, T_i]\) is given by

\[
HC = c_s \int_0^{T_i} I(t) \, dt \\
= c_s R \left\{ \frac{T_i^2}{2} + \frac{\alpha \beta}{(\beta + 1)(\beta + 2)} T_i^{\beta+2} \right\} \\
- - - (6)
\]

(c) Shortage cost during the interval \([T_i, T]\) is given by

\[
SC = c_s \int_{T_i}^{T} I(t) \, dt = \frac{c_s \delta R}{2} (T - T_i)^2 \\
- - - (7)
\]

(d) Opportunity cost due to lost sales in the interval \([T_i, T]\) is given by

\[
OC = c_s \int_{T_i}^{T} R(1 - \delta) \, dt = c_s R(1 - \delta)(T - T_i) \\
- - - (8)
\]

(e) Deterioration cost is given

\[
DC = c_5 \left[I(0) - \int_0^{T_i} R \, dt \right] \\
= \frac{c_5 \alpha R}{(\beta + 1)} T_i^{\beta+1} \\
- - - (9)
\]

(f) Interest payable per cycle is given by

\[
IP = c \int_{M_i}^{T_i} I(t) \, dt
\]
\[c I_p R \left\{ \frac{(T_1 - M_1)^2}{2} + \frac{\alpha \beta}{(\beta + 1)(\beta + 2)} T_1^{\beta + 2} + \frac{\alpha}{(\beta + 1)} - T_1 M_1 (M_1^\beta - T_1^\beta) \right\} \]

\(\text{--- (10)} \)

\((g) \) Interest earned per cycle is given by

\[I_E = c I_e \int_0^{M_1} R t \ dt \]

\[= \frac{c I_e R M_1^2}{2} \]

\(\text{--- (11)} \)

\((h) \) Since the payment is made at time \(M_1 \), the retailer can get a \(r \) cash discount off the price of merchandise is given by

\[\text{CD} = r c Q \]

\[= r c R \left\{ (1 - \delta) T_i + \frac{\alpha}{(\beta + 1)} T_i^{\beta + 1} + \delta T \right\} \]

\(\text{--- (12)} \)

Therefore the total cost per unit time is

\[C_1 (T_1, T) = \frac{C_1 + HC + SC + OC + DC + IP - IE - CD}{T} \]

\(\text{--- (13)} \)

Using (6) to (12) in (13), we get

\[\frac{1}{T} \left\{ c_1 + \frac{c_2 R T_i^2}{2} + \frac{\alpha \beta R}{(\beta + 1)(\beta + 2)} (c_2 + c I_p) T_1^{\beta + 2} + \frac{c_3 \delta R}{2} (T - T_i)^2
\]

\[+ c_4 R (1 - \delta) (T - T_i) + c I_p R \left\{ \frac{(T_1 - M_1)^2}{2} + \frac{\alpha T_i}{(\beta + 1)} M_1^{\beta + 1} - \frac{\alpha \beta}{(\beta + 1)(\beta + 2)} \right\} M_1^{\beta + 2}
\]

\[- \frac{\alpha R}{(\beta + 1)} (c I_p M_1 + r c - c_s) T_i^{\beta + 1} - \frac{c I_e R M_1^2}{2} - r c R \left\{ (1 - \delta) T_i + \delta T \right\} \right\} \]

\(\text{--- (14)} \)

For the minimization of cost we set,

\[\frac{\partial}{\partial T} C_1 (T_1, T) = 0 \quad \text{and} \quad \frac{\partial}{\partial T_1} C_1 (T_1, T) = 0 \]

\(\text{--- (15)} \)

\[\Rightarrow T = \frac{1}{c_1 \delta} \left\{ \frac{\alpha \beta}{(\beta + 1)} (c_2 + c I_p) T_i^{\beta + 1} - \alpha (c I_p M_1 + r c - c_s) T_i^\beta + (c_2 + c_s) \delta + c I_p) T_i
\]

\[- c_4 (1 - \delta) - r c (1 - \delta) - c I_p M_1 + \frac{c I_p \alpha}{(\beta + 1)} M_1^{\beta + 1} \right\} \]

\(\text{--- (15-a)} \)

\[\text{and} \]
\[T^2 = \frac{2}{c_3 \delta R} \left\{ \frac{\alpha \beta R}{(\beta + 1)(\beta + 2)} (c_2 + c_1 \beta \gamma) T_1^{\beta + 2} - \frac{\alpha R}{(\beta + 1)} (c \beta \gamma M_1 + r c - c_3) T_1^{\beta + 1} \\
+ (c_2 + c_3 \delta) \frac{RT_1^2}{2} - (c_4 + r c) R (1 - \delta) T_1 \\
+ c_1 \beta \gamma R \left[\frac{(T_1 - M_1)^2}{2} + \frac{\alpha T_1 M_1^{\beta + 1}}{\beta + 1} - \frac{\alpha \beta}{(\beta + 1)(\beta + 2)} M_1^{\beta + 2} \right] \\
- \frac{c_1 \beta \gamma R M_1^2}{2} + c_1 \right\} \]

To get the optimal values \(T^* \) and \(T_1^* \) of \(T \) and \(T_1 \) respectively we can proceed as follows:

Eliminating \(T \) from above two equations 15(a) & 15(b) as \([T]^2 - T^2 = 0 \), we get

\[
\left\{ \frac{1}{c_3 \delta R} \left[\frac{\alpha \beta}{(\beta + 1)} (c_2 + c_1 \beta \gamma) T_1^{\beta + 1} - \alpha (c \beta \gamma M_1 + r c - c_3) T_1^{\beta + 1} \\
+ (c_2 + c_1 \delta + c_1 \beta \gamma) T_1 - c_4 (1 - \delta) - r c (1 - \delta) - c_1 \beta \gamma M_1 + \frac{c_1 \beta \gamma}{(\beta + 1)} M_1^{\beta + 1} \right] \right\}^2 = 0
\]

\[
\frac{2}{c_3 \delta R} \left\{ \frac{\alpha \beta R}{(\beta + 1)(\beta + 2)} (c_2 + c_1 \beta \gamma) T_1^{\beta + 2} - \frac{\alpha R}{(\beta + 1)} (c \beta \gamma M_1 + r c - c_3) T_1^{\beta + 1} \\
+ (c_2 + c_1 \delta) \frac{RT_1^2}{2} - (c_4 + r c) R (1 - \delta) T_1 \\
+ c_1 \beta \gamma R \left[\frac{(T_1 - M_1)^2}{2} + \frac{\alpha T_1 M_1^{\beta + 1}}{\beta + 1} - \frac{\alpha \beta}{(\beta + 1)(\beta + 2)} M_1^{\beta + 2} \right] \\
- \frac{c_1 \beta \gamma R M_1^2}{2} + c_1 \right\} = 0
\]

Equation (15-c) is reducing now in one nonlinear variable \(T_1 \), so cannot be solved analytically.

Available software MS-Excel Solver is used here for solving \(T_1 \), \(T \) & \(C_1 \) from these equations as follows:

- Calculate the value of \(T \) from equation (15-a) and then square it. Calculate the value of \(T^2 \) from equation (15-b).
- Set the difference of above two calculated values equal to zero by changing the value of \(T_1 \). The value thus obtained will be \(T_1^* \) (Multiply this value by 365).
- The value of \(T_1^* \) is now substitute in either (15-a) or (15-b) to obtain the value of \(T^* \) (Multiply this value by 365).
- \(C_1 \) can be calculated by using optimal value of \(T_1 \) & \(T \) in equations (14) and (15-a) respectively.

It can be shown easily that second order sufficient conditions for a minimum value are satisfied.
Case 1.2 $T_1 \leq M_1$

In this case the length of the positive stock period is not greater than the period of cash discount. Inventory level

\[
\begin{align*}
\text{Case 1.2 } & T_1 \leq M_1 \\
\text{The setup cost, holding cost, shortage cost, opportunity cost due to lost sales and cash discount} \\
\text{are identical to case 1.2. However since } T_1 \leq M_1, \text{ the retailer pays no interest during the period} \\
[0, M_1] \text{ and the interest earned is given by} \\
\text{Therefore the total cost per unit time is} \\
\text{For the minimization of cost we set,}
\end{align*}
\]

\[
\begin{align*}
IE &= c I(x) \int_0^{T_1} R t \, dt + RT_1 \left(M_1 - T_1 \right) \\
&= \frac{c R I_t}{2} \left(2 M_1 T_1 - T_1^2 \right) \\
\therefore C_2 (T_1, T) &= \frac{c_1 + H C + S C + O C + D C - I E - C D}{T} \\
&= \frac{1}{T} \left(c_1 + c_2 R \left(\frac{T_1^2}{2} + \frac{\alpha \beta}{(\beta + 1)(\beta + 2)} T_1^{3 \beta + 2} \right) + \frac{c_3 \delta R}{2} (T - T_1)^2 + c_4 R (1 - \delta)(T - T_1) \\
&\quad \quad + \frac{\alpha R C_3}{\beta + 1} T_1^{3 \beta + 1} - \frac{c I_t R}{2} \left(2 M_1 T_1 - T_1^2 \right) - r c R \left((1 - \delta)T_1 + \frac{\alpha}{(\beta + 1)} + \delta T \right) \right) \\
\frac{\partial C_2(T_1, T)}{\partial T} &= 0 \quad \text{and} \quad \frac{\partial C_2(T_1, T)}{\partial T_1} = 0
\end{align*}
\]
The value of T_1, T & C_2 can be obtained similarly as described in case 1.1 also it can be shown easily that second order sufficient conditions for a minimum value are satisfied.

Case 2. Payment is made at time M_2

Case 2.1 $M_2 < T_1$

In this case the length of the positive stock period is greater than the last credit period. The setup cost, holding cost, shortage cost, opportunity cost due to lost sales are identical to case 1.1. The retailer has no cash discount in this case and the interest payable is given by

$$IP = cI_p \int_{M_2}^{T_1} I(t) \, dt$$

$$= cI_p R \left\{ \frac{(T_1 - M_2)^2}{2} + \frac{\alpha \beta}{(\beta + 1)(\beta + 2)} T_1^{\beta+2} + \frac{\alpha}{(\beta + 1)} T_1 M_2 (M_2^\beta - T_1^\beta) - \frac{\alpha \beta}{(\beta + 1)(\beta + 2)} M_2^{\beta+2} \right\}$$

- - - (20)

Interest earned per cycle is given by

$$IE = cI_e \int_0^{M_2} R t \, dt$$

$$= \frac{cI_e R M_2^2}{2}$$

- - - (21)

Therefore the total cost per unit time is

$$C_1(T_1, T) = \frac{c_1 + HC + SC + OC + DC + IP - IE}{T}$$

- - - (22)
\[
\begin{align*}
&= \frac{1}{T} \left\{ c_1 + c_2 R T_1^2 + \frac{\alpha \beta R}{(\beta + 1)(\beta + 2)} (c_2 + c I_p) T_1^{\beta + 2} + \frac{c_3 \delta R}{2} (T - T_1)^2 \\
&+ c_4 R (1 - \delta)(T - T_1) + c I_p R \left(\frac{(T_1 - M_2)^2}{2} + \frac{\alpha T_1 M_2^{\beta + 1}}{(\beta + 1)(\beta + 2)} \right) \right\} M_2^{\beta + 2} \\
&\quad - \frac{\alpha R}{\beta + 1} (c I_p M_2 - c_5) T_1^{\beta + 1} - \frac{c I_e R M_2^2}{2}
\end{align*}
\]

For the minimization of cost we set,
\[
\frac{\partial C_1(T_1, T)}{\partial T} = 0 \quad \text{and} \quad \frac{\partial C_3(T_1, T)}{\partial T_1} = 0
\]

The value of \(T_1, T \) & \(C_3 \) can be obtained similarly as described in case 1.1 also it can be shown easily that second order sufficient conditions for a minimum value are satisfied.

Case 2.2 \(T_1 \leq M_2 \)

In this case the length of the positive stock period is not greater than the last credit period. The setup cost, holding cost, shortage cost, opportunity cost due to lost sales are identical to case 1.1. The retailer has no cash discount and no interest payable in this case and the interest earned is given by

\[
IE = c I_e \left[\int_0^{T_1} R t \, dt + RT_1 \left(M_2 - T_1 \right) \right] \\
= \frac{c R I_e}{2} \left(2 M_2 T_1 - T_1^2 \right)
\]

For the minimization of cost we set,
\[
\frac{\partial C_1(T_1, T)}{\partial T} = 0 \quad \text{and} \quad \frac{\partial C_3(T_1, T)}{\partial T_1} = 0
\]

The value of \(T_1, T \) & \(C_3 \) can be obtained similarly as described in case 1.1 also it can be shown easily that second order sufficient conditions for a minimum value are satisfied.

Case 2.2 \(T_1 \leq M_2 \)

In this case the length of the positive stock period is not greater than the last credit period. The setup cost, holding cost, shortage cost, opportunity cost due to lost sales are identical to case 1.1. The retailer has no cash discount and no interest payable in this case and the interest earned is given by

\[
IE = c I_e \left[\int_0^{T_1} R t \, dt + RT_1 \left(M_2 - T_1 \right) \right] \\
= \frac{c R I_e}{2} \left(2 M_2 T_1 - T_1^2 \right)
\]
Therefore the total cost per unit time is

\[
C_4(T_1, T) = \frac{c_1 + HC + SC + OC + DC - IE}{T} \tag{26}
\]

\[
-\frac{1}{T}\left\{ c_1 + c_2 R \left(\frac{T_1^2}{2} + \frac{\alpha \beta}{(\beta + 1)(\beta + 2)} T_1^{\beta+2} \right) + \frac{c_3 \delta R}{2} (T - T_1)^2 \right. \\
+ c_4 R (1 - \delta)(T - T_1) + \frac{\alpha R c_5}{\beta + 1} T_1^{\beta+1} - \frac{c I_e R}{2} \left(2 M_2 T_1 - T_1^2 \right) \right\} \tag{27}
\]

For the minimization of cost we set,

\[
\frac{\partial C_4(T_1, T)}{\partial T} = 0 \quad \text{and} \quad \frac{\partial C_4(T_1, T)}{\partial T_1} = 0 \tag{28}
\]

The value of \(T_1, T\) & \(C_4\) can be obtained similarly as described in case 1.1 also it can be shown easily that second order sufficient conditions for a minimum value are satisfied.

Algorithm

The optimal replenishment policies and minimum total cost per unit time can be obtained by using the following algorithm:

Step 1. Determine \(T_1^a\) and \(T^a\) from (15). If \(M_1 < T_1^a\), obtain \(C_1(T_1^a, T^a)\) from (14); otherwise \((T_1^a, T^a)\) is infeasible.

Step 2. Determine \(T_1^b\) and \(T^b\) from (19). If \(T_1^b \leq M_1\), obtain \(C_2(T_1^b, T^b)\) from (18); otherwise \((T_1^b, T^b)\) is infeasible.

Step 3. Determine \(T_1^c\) and \(T^c\) from (24). If \(M_2 < T_1^c\), obtain \(C_3(T_1^c, T^c)\) from (23); otherwise \((T_1^c, T^c)\) is infeasible.

Step 4. Determine \(T_1^d\) and \(T^d\) from (27). If \(T_1^d \leq M_2\), obtain \(C_4(T_1^d, T^d)\) from (28); otherwise \((T_1^d, T^d)\) is infeasible.

Step 5. By comparing \(C_1(T_1^a, T^a), C_2(T_1^b, T^b), C_3(T_1^c, T^c)\) and \(C_4(T_1^d, T^d)\), select the optimum replenishment cycle and optimal stock period (denoted by \(T^*\) and \(T_1^*\) respectively) with the least total cost per unit time (denoted by \(C^*\)). Once the optimal value \(T^*\) and \(T_1^*\) are obtained, the optimal order quantity, \(Q^*\), can be obtained from (5).

Numerical Example

For the numerical illustration of the developed model, we consider the following values of the parameters

\[
c_1 = \$200 \text{ per setup} \quad c_2 = \$2 / \text{unit/year} \quad c_3 = \$8 / \text{unit/year} \\
c_4 = \$2 / \text{unit/year} \quad c_5 = 1.25 \text{ unit/year} \quad R = 1000 \text{ unit/year} \\
c = \$20 / \text{unit} \quad I_e = 0.13 / \text{year} \quad I_p = 0.15 / \text{year} \\
\delta = 0.8
\]
Sample calculation procedure for obtaining values in tabular format is as follows:
Substituting the above parameters with \(M_1 = 5, M_2 = 30, \alpha = 0.02 \) and \(\beta = 1.5 \) in equation (15-c) and solving by MS-Excel Solver software as described in case 1.1, we obtain \(T_1^* = 0.248039 \) and \(T^* = 0.36732427 \). Multiplying them by 365 we get \(T_1^* = 90.53408 \) and \(T^* = 134.0734 \). Substituting these values in equation (14) we get \(C_1 = 1003.428 \). Values of \(C_2, C_3 \) and \(C_4 \) can be obtained in the same way respectively in their cases. The optimal cost \(C^* \) can be obtained by using the algorithm given above.

The optimal solutions obtained by varying the values of \(r, M_1, M_2, \alpha \) and \(\beta \) are shown in tables below.

\(r = 0.01 \)

<table>
<thead>
<tr>
<th>(M_1)</th>
<th>(M_2)</th>
<th>(A)</th>
<th>(\beta)</th>
<th>(C^*)</th>
<th>(T_1^*) in days</th>
<th>(T^*) in days</th>
<th>Payment Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>30</td>
<td>0.02</td>
<td>1.5</td>
<td>1003.428</td>
<td>90.53408</td>
<td>134.0734</td>
<td>(M_1)</td>
</tr>
<tr>
<td>60</td>
<td>0.04</td>
<td>1.5</td>
<td>879.5674</td>
<td>99.50439</td>
<td>126.846</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.06</td>
<td>1.5</td>
<td>698.6566</td>
<td>103.9072</td>
<td>120.9178</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>0.02</td>
<td>1.5</td>
<td>975.7464</td>
<td>91.5139</td>
<td>133.4743</td>
<td>(M_1)</td>
</tr>
<tr>
<td>60</td>
<td>0.04</td>
<td>1.5</td>
<td>879.4976</td>
<td>99.50439</td>
<td>126.846</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.06</td>
<td>1.5</td>
<td>698.5339</td>
<td>103.9072</td>
<td>120.9178</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>0.02</td>
<td>1.5</td>
<td>947.8437</td>
<td>92.47791</td>
<td>132.8471</td>
<td>(M_1)</td>
</tr>
<tr>
<td>60</td>
<td>0.04</td>
<td>1.5</td>
<td>879.4318</td>
<td>99.50476</td>
<td>126.8467</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.06</td>
<td>1.5</td>
<td>698.4176</td>
<td>103.9072</td>
<td>120.9178</td>
<td>(M_2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(M_1)</th>
<th>(M_2)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(C^*)</th>
<th>(T_1^*) in days</th>
<th>(T^*) in days</th>
<th>Payment Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>30</td>
<td>0.02</td>
<td>1.5</td>
<td>909.8052</td>
<td>91.0145931</td>
<td>133.7769862</td>
<td>(M_1)</td>
</tr>
<tr>
<td>60</td>
<td>0.04</td>
<td>1.5</td>
<td>879.3887</td>
<td>99.5043912</td>
<td>126.846009</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.06</td>
<td>1.5</td>
<td>698.3433</td>
<td>103.907209</td>
<td>120.917783</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>0.02</td>
<td>1.5</td>
<td>881.9129</td>
<td>91.4853843</td>
<td>133.4565872</td>
<td>(M_1)</td>
</tr>
<tr>
<td>60</td>
<td>0.04</td>
<td>1.5</td>
<td>879.319</td>
<td>99.5047595</td>
<td>126.846008</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.06</td>
<td>1.5</td>
<td>698.2206</td>
<td>103.907209</td>
<td>120.917784</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>0.02</td>
<td>1.5</td>
<td>853.7974</td>
<td>92.9280967</td>
<td>132.496071</td>
<td>(M_1)</td>
</tr>
<tr>
<td>60</td>
<td>0.04</td>
<td>1.5</td>
<td>852.9891</td>
<td>93.0386659</td>
<td>132.560669</td>
<td>(M_1)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.06</td>
<td>1.5</td>
<td>698.1044</td>
<td>103.907209</td>
<td>120.917784</td>
<td>(M_2)</td>
<td></td>
</tr>
</tbody>
</table>

\(r = 0.015 \)

<table>
<thead>
<tr>
<th>(M_1)</th>
<th>(M_2)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(C^*)</th>
<th>(T_1^*) in days</th>
<th>(T^*) in days</th>
<th>Payment Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>30</td>
<td>0.02</td>
<td>1.5</td>
<td>911.5065</td>
<td>91.0145931</td>
<td>133.7769862</td>
<td>(M_1)</td>
</tr>
<tr>
<td>60</td>
<td>0.04</td>
<td>1.5</td>
<td>879.3887</td>
<td>99.5043912</td>
<td>126.846009</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.06</td>
<td>1.5</td>
<td>698.3433</td>
<td>103.907209</td>
<td>120.917783</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>0.02</td>
<td>1.5</td>
<td>881.9129</td>
<td>91.4853843</td>
<td>133.4565872</td>
<td>(M_1)</td>
</tr>
<tr>
<td>60</td>
<td>0.04</td>
<td>1.5</td>
<td>879.319</td>
<td>99.5047595</td>
<td>126.846008</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.06</td>
<td>1.5</td>
<td>698.2206</td>
<td>103.907209</td>
<td>120.917784</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>0.02</td>
<td>1.5</td>
<td>853.7974</td>
<td>92.9280967</td>
<td>132.496071</td>
<td>(M_1)</td>
</tr>
<tr>
<td>60</td>
<td>0.04</td>
<td>1.5</td>
<td>852.9891</td>
<td>93.0386659</td>
<td>132.560669</td>
<td>(M_1)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.06</td>
<td>1.5</td>
<td>698.1044</td>
<td>103.907209</td>
<td>120.917784</td>
<td>(M_2)</td>
<td></td>
</tr>
</tbody>
</table>

\(r = 0.01 \)

<table>
<thead>
<tr>
<th>(M_1)</th>
<th>(M_2)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(C^*)</th>
<th>(T_1^*) in days</th>
<th>(T^*) in days</th>
<th>Payment Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>30</td>
<td>0.02</td>
<td>1.4</td>
<td>1003.615</td>
<td>90.5048652</td>
<td>134.0547862</td>
<td>(M_1)</td>
</tr>
<tr>
<td>60</td>
<td>0.02</td>
<td>1.6</td>
<td>877.9349</td>
<td>99.7759595</td>
<td>127.0292776</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.02</td>
<td>1.8</td>
<td>694.6428</td>
<td>104.450754</td>
<td>121.2487103</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>0.02</td>
<td>1.4</td>
<td>975.9333</td>
<td>91.4853843</td>
<td>133.4565872</td>
<td>(M_2)</td>
</tr>
<tr>
<td>60</td>
<td>0.02</td>
<td>1.6</td>
<td>877.9049</td>
<td>99.7759595</td>
<td>127.0292776</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.02</td>
<td>1.8</td>
<td>694.6169</td>
<td>104.450754</td>
<td>121.2487103</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>0.02</td>
<td>1.4</td>
<td>948.0314</td>
<td>92.4498511</td>
<td>132.8297723</td>
<td>(M_2)</td>
</tr>
<tr>
<td>60</td>
<td>0.02</td>
<td>1.6</td>
<td>877.8765</td>
<td>99.7759592</td>
<td>127.0292776</td>
<td>(M_2)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.02</td>
<td>1.8</td>
<td>694.5918</td>
<td>104.450754</td>
<td>121.2487103</td>
<td>(M_2)</td>
<td></td>
</tr>
</tbody>
</table>
For fixed r and M_1 the larger the values of M_2 is, the smaller the total cost per unit time would be.

For fixed r and M_2 the larger the values of M_1 is, the smaller the optimal cost, the larger the value of M_1 is, the smaller the optimal total cost per unit time would be i.e. 1003, 975, 947 as the optimal payment time is M_2.

However if the optimal payment time is M_2, the optimal total cost per unit time is independent of M_1.

For fixed r, M_1 and β as the value of scale parameter α increases the total cost also increases as compared to the model by Ouyang et al.

For fixed r, M_1 and α as the value of scale parameter β increases the total cost of the inventory system again increases as compared to the cost obtained by Ouyang et al. under same parametric values. Although the increase in cost is much significant with the increasing values of α as compared to the cost when the value of β increases.

Conclusion

An inventory model with Weibull distribution deterioration, shortages, cash discount and permissible delay in payment has been developed in the article. An algorithm is suggested to find the optimal replenishment policies and minimum total cost per unit time, which helps the inventory manager to decide whether it would be worthwhile to take advantage of a longer credit period for repaying the supplier by ordering a larger amount of the commodity. The sensitivity analysis reveals the importance of developed model. The model developed is much more realistic as it considers time-dependent deterioration.

Acknowledgement

The authors are grateful to the honorable reviewers for their valuable suggestions which have led to a significant improvement in the original paper.
References

The 20th National Conference of the Australian Society for Operations Research 2009

28-30 September 2009, Gold Coast, Australia

For further details visit
The online version of International Abstracts in Operations Research (IAOR) has been completely revamped and will be opened to subscribers in January 2009. IAOR Online, a publication of the International Federation of Operational Research Societies (IFORS), is the most complete source for bibliographic and abstract information in Operations Research and Management Science – sourced from 180 of the world’s leading journals.

We invite you to try the Beta Version at www.palgrave-journals.com/iaor and provide feedback which will help us improve the final product. To activate the site, you will be asked to provide your email address and set up a password, which you may use each time after that for as long as the Beta Version is available. Each person who does so prior to the end of September and completes the short online User Survey will be entered into a drawing with the opportunity to win an iPod Nano.

The Beta Version contains approximately 20,000 indexed abstracts from the years 2002-2007, which for trial purposes is sufficient for a realistic test of literature searching. When released to the public, the new IAOR Online will contain more than 55,000 indexed Operations Research and Management Science abstracts from 1989 to the present, and will be updated weekly from the current literature.

Search commands are flexible, from simple subjects or author names, to complex Boolean expressions. All abstracts are in English, but the original source language is identified.

The more comments we receive now, the better this publication will become, so we greatly appreciate your help.

Hugh Bradley
IFORS Project Manager
Forthcoming Conferences

Recent Advances in Operations research 2008
26th November 2008, Melbourne Chapter Conference
Deakin University, Melbourne, Email Dr Vicky Mak (vicky@deakin.edu.au)

9th Asia-Pacific Industrial Eng. and Management Systems (APIEMS) Conference
Bali, Indonesia, 3 - 5 December 2008
http://www.apiems2008.org

12th Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES’08)
7 - 8 December 2008, The University of Melbourne, Victoria, Australia

International conference on “Operations Research for a Growing Nation”
15-17th December, 2008.
Sri Venkateswara University, Tirupati-517502, Andhra Pradesh, India
Website: www.orsicon2008.com

IEEE Symposium on Computational Intelligence in Scheduling (CI-Sched 2009)
March 30 - April 2, 2009, Sheraton Music City Hotel, Nashville, USA

IEEE Joint Conference on Computational Sciences and Optimization (IEEE CSO 2009)
24-26 April 2009, Sanya, Hainan Island, China
http://www.gip.hk/cso2009/

SimTecT 2009 Simulation Conference
15-16 June 2009, Adelaide

The forth International Symposium on Scheduling (Int.S.S.09)
4 - 6 July 2009, Nagoya, Japan
http://www.fujimoto.mech.nitech.ac.jp/iss2009/

EURO XXIII 2009 Conference
July 5 – 8, 2009, Bonn
http://www.euro-2009.de

International Conference on Computers & Industrial Engineering (CIE39)
July 6 - 8, 2009, Troyes, France
http://www.utt.fr/cie39/

18th World IMACS Congress and International Congress on Modelling and Simulation
(MODSIM09) 13–17th July 2009, Cairns, Australia

The 20th National Conference of the Australian Society for Operations Research 2009
28-30 September 2009, Gold Coast, Australia
Dear colleagues,

On behalf of The Australian Society for Operations Research Inc., we are pleased to invite members and non-members to the ASOR 20th National Conference incorporating the 5th International Intelligent Logistics Systems Conference. We envisage a conference focusing on the broad range of areas in which operations research, logistics and operations research practitioners’ work, within the theme “Making the Future Better by Operations Research”. ASOR gives you a unique opportunity to keep up-to-date with operations research issues in Australia and overseas. We welcome you to attend the conference and participate in specialized workshops and sessions relating to your specific areas of interest and have informal discussions with researchers and practitioners. We expect everyone who attends this conference to receive value from the program and enjoy the atmosphere and surroundings of this first class venue.

For further information, please visit our conference web-site:

We look forward to seeing you at the Conference.

Yours sincerely,
Erhan Kozan
Chair,
ASOR Conference 2009
Do you need to develop and apply Operations Research models?

Operations Research Software

- Optimisation
 - What’sBest!
 - LINDO API
 - LINGO
 - Premium Solver

- Monte Carlo Simulation
 - Crystal Ball
 - Discrete Event Simulation
 - ProModel

- Software downloads
- Videos
- Case studies
- Example models

For over 100 technical software applications
The ASOR Bulletin is published in March, June, September and December by the Australian Society of Operations Research Incorporated.

It aims to provide news, world-wide abstracts, Australian problem descriptions and solution approaches, and a forum on topics of interests to Operations Research practitioners, researchers, academics and students.

Contributions and suggestions are welcomed, however it should be noted that technical articles should be brief and relate to specific applications. Detailed mathematical developments should be omitted from the main body of articles but can be included as an Appendix to the article. Both refereed and non-refereed papers are published. The refereed papers are peer reviewed by at least two independent experts in the field and published under the section ‘Refereed Paper’.

Articles must contain an abstract of not more than 100 words. The author’s correct title, name, position, department, and preferred address must be supplied. References should be specified and numbered in alphabetical order as illustrated in the following examples:

Contributions should be prepared in MSWord (doc or rtf file), suitable for IBM Compatible PC, and a soft copy should be submitted either as an email attachment or on a 3.5” diskette. The detailed instructions for preparing/formatting your manuscript can be found in the web: http://www.cs.adfa.edu.au/~ruhul/asor.html

Reviews: Books for review should be sent to the book review subeditor A/Prof. G.K. Whymark, c/- the editors. Note that the subeditor is also interested in hearing from companies wishing to arrange reviews of software.

Advertising: The current rate is $300 per page, with layout supplied. Pro-rata rates apply to half and quarter pages and discounts are available for advance bookings over four issues.

Subscriptions: For Vol. 26, bulletins will be provided to all Members of ASOR as part of the membership fee.

Deadlines: The deadline for each issue (for all items except refereed articles) is the first day of the month preceding the month of publication.

Editor: Address all correspondence and contributions to:

Dr Ruhul A Sarker,
School of ITEE, UNSW@ADFA
Northcott Drive, Canberra ACT 2600
Tel: (02) 6268 8051 Fax: (02) 6268 8581
Email: r.sarker@adfa.edu.au