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Abstract 
 
This paper presents a direct-search algorithm 
for design optimization of engineering 
problems having mixed variables (continuous, 
discrete and integer); nonlinear, non-
differential and discontinuous design 
constraints and conflicting multiobjective 
functions. The intelligent movement of objects 
(vertices and compounds) is simulated in the 
algorithm based on Nelder-Mead simplex with 
added features to handle variable types, 
bound and design constraints, local optima, 
search initiation from an infeasible region and 
numerical instability, which are common 
requirements for large-scale, complex 
optimization problems. The algorithm is called 
INTEMOB (INTElligent Moving OBjects) and 
tested for a wide range of algebraic problems, 
simple engineering design problems and 
large-scale, complex engineering problems.  
Validation results for several examples, which 
are manageable within the scope of this 
paper, are presented herein, and references 
are provided for large-scale problems that 
were solved by INTEMOB. 

Introduction 

Optimization usually involves maximization or 
minimization of a function f(x1, x2, ….., xN) of 
several variables x1, x2, ….., xN subject to a 
set of constraints. To solve linear optimization 
problems, the simplex algorithm is a powerful 
tool and its primal and dual applications are 
widely documented. Most industrial design 
problems, however, involve nonlinear 
objective and constraint functions. The 
Sequential Linear Programming (SLP) has 
been a good tool for solving nonlinear 
problems (Mistree, et al., 1981) through a 
series of linear approximations.  
 
Quadratic Programming (QP) was also 
introduced to solve nonlinear problems. 
Various QP algorithms include the primal 

method (Goldfarb, 1972), the dual method 
(Goldfarb and Idnani, 1983), the principal 
pivoting method (Cottle and Dantzig, 1968), 
the parametric method (Grigoriadis and Ritter, 
1969), the primal-dual method (Goncalves, 
1972) and the subproblem optimization 
method (Theil and Van-De-Oanne, 1960). 
Like SLP, the sequential applications of QP to 
enhance its solution capability for higher-
order nonlinear problems led to the 
development of Sequential Quadratic 
Programming (SQP) techniques (Gurwitz and 
Overton, 1989; Murray and Prieto, 1995; 
Spellucci, 1998). Other classical methods for 
continuous variable optimization include 
mathematical programming (Rao, 1984), 
geometric programming (Peterson, 1976), 
optimality criteria (Berke and Venkayya, 
1974) and Augmented Lagrangian (Pierre 
and Lowe, 1975) methods.  
 
Most of the methods mentioned above are 
based on classical differential calculus, and 
require continuous differentiability, availability 
of gradient vectors and existence of second 
derivatives. For problems with differentiable 
smooth functions, these derivative based 
methods are usually reliable and 
computationally efficient. Many real-world 
engineering design problems, however, 
involve discontinuous and non-differentiable 
functions, design variables requiring a 
combination of continuous, integer and 
discrete values and conflicting multiple design 
objectives. The difficulty of non-
differentiability in using the methods is 
attempted to overcome by various numerical 
differentiation techniques with various 
degrees of accuracy; however, they often 
suffer from numerical instability. On the other 
hand, manipulations of the original problem 
by SLP, SQP or special techniques 
incorporated in classical methods provide a 
solution to an approximate problem, not the 
exact problem.  
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To overcome many of the above difficulties 
with gradient-based methods, various direct-
search methods evolved over the time. Some 
examples include normal-boundary 
intersection algorithm (NBI) (Das and Dennis, 
1998), genetic algorithms (GA) (Ndiritu and 
Daniell, 1999; Wu and Chow, 1995), entropy 
algorithms (Das et al., 1999) and evolutionary 
operation (EVOP) (Ghani, 1989). Direct 
search methods, such as GA, PA and EVOP 
are generally slow in convergence but are 
successful to find reliable optimum solutions 
of problems having high degree of various 
noises including discontinuity and non-
differentiability in functions. Because of these 
features, many direct search methods are 
increasingly becoming popular with the 
advent of ultra-fast computing facilities, and 
therefore there is ever growing needs to 
improve various features of these methods, 
as has been attempted in this work. 

 
The main objectives of this paper are (1) to 
present the basic principle of an optimization 
algorithm capable to handle conveniently the 
above-mentioned complex natures of real-
world engineering problems, (2) to present 
validation results for pure algebraic as well as 
engineering design problems that are 
manageable within the scope of this paper, 
(3) to provide further references to large-scale 
complex design problems that have been 
solved by the algorithm. 
 
Proposed Algorithm: INTEMOB  

The simplex algorithm of Nelder and Mead 
(1965) is one widely used contribution to 
direct-search optimization algorithms. It has 
also been the basis of the proposed algorithm 
because of its inherent capability to move a 
point to a minimum vertex of a function 
without requiring any derivative information; 
thus, conveniently handling non-differentiable 
and even discontinuous functions. The 
original simplex, however, did not incorporate 
any features to consider nonlinear design 
constraints, non-continuous variables 
(discrete, integer) and the presence of local 
minima/maxima. It was a strict requirement to 
initiate search with vertices within the feasible 
space. Bounds on variables were possible to 
consider by complex logarithmic scale 
transformation. Also it did not have any 

scheme to mitigate non-convergence 
numerical instability. Due to the lack of such 
features, the original simplex was not 
applicable to most real-world engineering 
problems, and was unreliable even in some 
fairly simple situations (McKinnon, 1998). 
Various attempts have been made to 
overcome some of the short comings (Ghani, 
1972; Lagarias et al., 1998). This author 
incorporated and coded the following 
additional features: (1) starting of the 
optimization process with only one initial point 
which may also be in the feasible or infeasible 
space (very important, because finding even 
one feasible point manually may be a very 
exhaustive task for large and complex design 
problems), (2) direct handling of bounds on 
design variables, (3) handling of design 
constraints of any nature, (4) handling of 
discrete/integer variables, (5) mitigating 
potential numerical instabilities, and (6) a 
global optimization loop to overcome local 
minima/maxima.  
 
The modified algorithm with the above-
mentioned additional features is called in this 
paper, INTEMOB (an INTElligent Moving 
OBject), because it finds optimum solution by 
generating and moving an object (called 
‘compound’) using ‘intelligence’ more than 
mathematics. 
 
The general framework of INTEMOB can be 
expressed as: 
 
Find 
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to minimize 
 

)(xfZ =  (4) 
 
where, x  represents the vector of free design 
variables (the superscript 'T' for transpose); 
li's and ui's are constants or functions of x  (in 
the latter case the bound constraints 
constitute moving boundaries) representing 
the ranges of xi's; Cli's and Cui's are constants 
or functions of x representing the ranges of 
design constraints,  )(xCi 's, which must not 
be violated by the optimum design; N is the 
total number of free design variables and M is 
the total number of design constraints; f(x) is 
the final function to be minimized, 
representing either a single design objective 
or a formulated multiobjective function.  
 
INTEMOB Solution Procedure 

The solution procedure of INTEMOB includes 
4 major steps: (1) generation of ‘vertices’ and 
formation of a ‘compound’; (2) moving a 
compound (3) identifying and mitigating 
numerical instability; and (4) terminating the 
process by convergence tests. 
 
Generating Vertexes and Compounds 

The optimization procedure starts with an 
initial vertex (also called point, design) in the 
N-dimensional space bounded by the ranges 
of design variables, as shown in Fig. 1 in a 
two-dimensional space for the convenience of 
description. Straight lines (l1, u1 and l2, u2) 
parallel to the co-ordinate axes represent the 
lower and upper bounds on variables, x1 and 
x2, respectively. Curved lines Cl1 and Cu1 
represents the lower and upper bounds, 
respectively, on design constraint 1, C1(x), 
and Cl2 and Cu2 on design constraint 2, C2(x). 
Certainly, there could be more than these two 
design constraints and their lower and upper 
bounds. The hatched area is the two-
dimensional feasible search space. The initial 
vertex must be within the variable bounds, 
and may or may not satisfy the design 
constraints. If the initial vertex does not 
satisfy any of the design constraints (i.e. not 
within the hatched area), a random vertex is 
generated as follows: 
 

Nilurlx iiiii .........,,1);( =−+=   (5) 

 
A value of ri is generated between 0 and 1 for 
the i-th coordinate by a random number 
generator. Any random number generator 
routine can be used for this purpose. From 
this point onward, whenever the generation of 
a vertex (point) or a compound is mentioned 
that basically means the random number 
generator subroutine in INTEMOB is called as 
required.  
 
If the generated random vertex is still in the 
infeasible region, it is moved stepwise 
halftimes the distance between the initial 
vertex and the generated vertex along the 
straight line with these two vertices. After 
each movement, the design constraints are 
checked and the process is continued until 
the vertex satisfies all the design constraints. 
If the positive step-length moves the vertex 
away from the unsatisfied design constraint 
bound(s), a negative step-length is used. The 
half-step movement process will be further 
obvious from Eq. (6). The vertex ‘a’ in Fig.1 is 
either an initial feasible vertex, or a randomly 
generated feasible vertex, or feasible vertex 
through the movement. This overcomes the 
strict requirement for an initial feasible vertex.  
   

 
Fig. 1: Generation of initial compound. 

 
Once a feasible vertex is established, Eq. (5) 
is executed further K-1 times to generate 
further K-1 different random vertices, where K 
= 2N for N ≤ 5 and K = N + 1 for N > 5.  Note 
that the Nelder-Mead simplex requires N+1 
vertices for an N-dimensional space, whereas 
this author has used 2N vertices for low-
dimensional spaces based on experience of 
better convergence to a minimum. Equation 
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(5) itself ensures that the randomly generated 
vertices remain in the space bounded by the 
ranges of variables defined by Eq. (2). 
However, any of the generated points may 
initially violate any of the design constraints 
defined by Eq. (3) and therefore a technique 
is required to move such points towards 
satisfying Eq. (3). The four vertices for the 
two-dimensional space (2N) a, b', c' and d' 
are also shown in Fig. 1. Obviously, vertices 
b', c' and d' violate Eq. (3). These vertices are 
modified in the order of d', c' and b' by moving 
successively towards the centriod, c by: 

( xcx ′+=
2
1 )     (6) 

until the new point, x  satisfies Eq. (3). The 
coordinates of the cenrtriod, c are calculated 
using vertices that have already satisfied Eq. 
(3) as follows: 

 ∑
=

=
n

i
ii x

n
c

1

1      (7) 

where n is the number of vertices which have 
already satisfied Eq. (3). 
 
The modified points are a, b, c and d which 
satisfy both Eqs. (2) and (3). These four 
feasible vertices comprise an object called 
‘compound’ abcd, as shown in Fig. 1. The 
values of the objective function, f(a), f(b), f(c) 
and f(d) at these four vertices are calculated 
and assumed to be in the order of 
f(a)<f(b)<f(c)<f(d).  If the initial notations of 
vertices do not satisfy this order, vertices are 
re-denoted according to this order. 
 
For a convex feasible parameter space the 
above method for moving an infeasible vertex 
to the feasible space would always succeed 
in generating a compound with K vertices. 
However, if the parameter space is 
nonconvex, and the centroid happens to lie in 
the infeasible area, there is every chance that 
a compound can not be generated. Fig. 2 
shows such a possibility. Three vertices a, b 
and c in the feasible space have already been 
generated. The fourth vertex, e.g. a trial point 
T1, satisfies the variable bounds, but violates 
a design constraint. To move T1 in the 
feasible space it is continually moved halfway 
towards the centroid, X. Since the centroid 
itself is infeasible no amount of such moves 

would make T1 feasible, and a compound with 
four vertices can never be generated. 
Safeguard against such a possibility is never 
to allow an infeasible centroid. If a new 
feasible vertex results in the new centroid to 
lie in the infeasible area, that new vertex is 
discarded, and another generated until a 
feasible centroid is obtained.  
 

 
Fig.2: Centroid in the infeasible space can not 

generate a compound. 
 
Moving a Compound 

A compound is moved in this algorithm by 
shifting its worst vertex towards an optimum 
location in the feasible space. To initiate the 
compound movement, the compound vertices 
having highest, second highest and the 
lowest objective function values are identified 
and numbered by integers ‘nh’, ‘nm’ and ‘nl’, 
respectively. For our two-dimensional 
example, these correspond to f(d), f(c) and 
f(a), respectively. The movement process 
begins by over-reflecting the worst vertex ‘nh’ 
of a compound on the feasible centroid, c, of 
the remaining vertices. This over-reflection 
generates a new trial point tx : 
 

( ) nht xcx αα −+= .1      (8) 
 
where α is the reflection coefficient in the 
range of 1.0 to 2.0 and the vector 

nhx contains the coordinate values of vertex 
‘nh’. If a coordinate value of the trial point 
violates its any of the bounds, that coordinate 
is just shifted inside the violated bound by a 
small distance, i.e. δ±= ba xx , where xa is 
the adjusted coordinate, xb is the bound value 
that was violated by that coordinate, and δ is 
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a very small value, 10-12 is used for double 
precision computation. If any design 
constraint is violated, the trial point is 
repeatedly moved halfway towards the 
centroid of the rest of the vertices (i.e. 
excluding the vertex ‘nh’ and the trial point 

tx ) in the compound until the constraint is 
satisfied. The new trial point that satisfies all 
the variable bounds and design constraints is 
called feasible trial point, ftx . 
 

 
Fig. 3: Unsuccessful over-reflection and first 

type of contraction. 
 
The function value at the feasible trial point, 

ft
 is next evaluated. The reflection step is 

considered successful if the objective function 
value at this new trial point is lower than that 
at vertex ‘nm’. The current vertex ‘nh’ is then 
deleted, the vertex ‘nm’ is redefined as vertex 
‘nh’ and vertices ‘nm’ and ‘nl’ are redefined 
according to new objective function values to 
form a new and superior compound. If, 
however, the objective function value at the 
trial point is greater than that at vertex ‘nm’ of 
the current compound, the trial point would 
still be the worst vertex in the new compound. 
The reflection step is, therefore, considered 
not successful enough and a contraction step 
is applied. Depending on the outcome of 
current over-reflection, any of the following 
three contraction schemes is applied. 

x

 
If )()()( nhftnm xfxfxf <≤ , the trial point 
suffers from excessive over-reflection, and 
the coordinates of a new trial point x is 
generated as: 
 

( ) nhxcx ββ −+= .1     (9) 
 

If )()( nhft xfxf ≥ , the coordinates of the 
new trial point are estimated as: 
 

 ( )cxx nh ββ −+= .1    (10) 
 
In Eqs. (9) and (10), the range of β is 0.0 to 
1.0. Note that Eq. (9) is an additional feature 
to enforce accelerated improvements in the 
objective function. 
 
The third type of contraction is generation of a 
small compound using vertex ‘nl’ as the 
starting point. This type of contraction is 
applied only after first and second types of 
contraction (Eqs. 9 and 10, respectively) have 
been previously applied consecutively for 
more than 2K times. 
 
Fig. 3 explains the first type of contraction for 
the two-dimensional example. The worst 
vertex, d of the current compound ‘abcd’ is 
over-reflected on the feasible centroid, X of 
‘abc’. The trial point, T1 so obtained is moved 
just inside the variable bound to T2 as x2 = l2 + 
δ, which still violates a design constraint. T2 is 
moved towards the centroid, X according to 
half-step procedure, as described in the 
previous section, along the line joining T2 and 
X resulting in a completely feasible trial point, 
T3. Function value at T3 is calculated, and 
found to be intermediate between the second 
highest function value at vertex, c, and the 
highest function value at vertex, d. If the 
vertex, d is replaced by the feasible trial point, 
T3 to form a new compound ‘abcT3’, then T3 
would be the worst vertex in the new 
compound. Although it is an improved 
compound, this reflection step is considered 
not successful enough to change the 
compound configuration by changing the 
order of superiority among vertices. To 
enforce this, point T3 is rejected, and the first 
type of contraction (Eq. 9) is applied. Due to 
this contraction, the worst vertex, d is now 
under-reflected on the feasible centroid, X to 
T4. Since the trial point, T4 violates a design 
constraint it is moved halfway towards the 
centroid to T5. The trial point, T5 is feasible, 
and replaces the worst vertex, d to form a 
new complex ‘abcT5’. The trial point, T4 would 
have been on the other side of X, i.e. closer 
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to vertex, d in case the second type of 
contraction was necessary to apply. Then the 
movement of this point, if it were in the 
infeasible region, to the feasible space would 
have been similar. 
 
If on over-reflection the trial point has not 
violated any constraints (i.e. tx and ftx are 
identical without any movement), and has an 
objective function value lower than the lowest 
function value at vertex ‘nl’ of the current 
compound (i.e. )()( nlt xfxf < ), and the 
previous action was not contraction by any of 
the three schemes above, this over-reflection 
is considered over-successful. An expansion 
attempt is then taken to generate a new trial 
point further away from the feasible centroid 
along the same straight line used for over-
reflection. The co-ordinates of this expanded 
trial point is given by: 
 

 ( )cxx te γγ −+= .1    (11) 
 
The usual range of γ is 1.0-3.0. The feasibility 
of this expanded trial point, ex  is checked. If 
any of variable bounds or design constraints 
is violated, the expansion attempt is 
considered unsuccessful, and a new 
compound is formed with the over-reflected 
feasible trial point tx that replaces the worst 
vertex ‘nh’ of the current compound. 
Otherwise, the objective function value at 

ex is evaluated. If )()( te xfxf < , the 
expansion attempt is considered successful. 
The expanded vertex, ex then replaces the 
worst vertex ‘nh’ to form the new compound. 
If )()( te xfxf ≥ , the expansion attempt is 
also considered unsuccessful. The expanded 
vertex, ex is rejected and the trial point, tx is 
used to form the new compound.  
 
The next cycle of compound movement is 
started with the current compound improved 
through the above-described procedure.   
 
Mitigating Numerical Instability 
 
Two types of numerical instability are 
experienced during repeated compound 
movement:  (1) collapse of a compound on an 
infeasible centroid, and (2) collapse of a 
compound on a straight line.  
 

 
Fig. 4: Collapse on infeasible centroid. 

 
Compound Centroid in Infeasible Space  
 
If the search space is non-convex, there is a 
possibility that the compound would collapse 
due to shifting by over-reflection. For 
example, referring to Fig. 4, the worst point, d 
is reflected over the centroid, X to create a 
trial point, T1, which violates a design 
constraint. Since the centroid itself is in the 
infeasible region, repeated movement of 
point, T1 halfway towards the centroid would 
result in collapse of the point on the centroid. 
Collapsing of a point on the centroid means 
their corresponding coordinate values are 
equal within a pre-specified resolution. The 
new compound has now three vertices a, b 
and c. One more such collapse would result 
in complete collapse of the compound, 
because an object with two vertices can not 
span in a two dimensional space. Note that a 
compound not to collapse in an N-
dimensional space, K ≥ (N+1) must be 
satisfied.  
 
This collapse problem can be overcome as 
follows: 
 
1. The centroid of all vertices except ‘nh’ is 
calculated, and its feasibility is verified.  
2. If the centroid is feasible, the steps below 
here are not necessary and the process then 
passes on to testing for collapse on a straight 
line. Otherwise, continue from (3) below. 
3. Vertex ‘nm’ is excluded, and the centroid 
of all other vertices is calculated (i.e. 
excluding vertices ‘nh’ and ‘nm’). 
4. If the centroid is in the feasible space then 
continue from (5) below. Otherwise, if the 
centroid is infeasible a new compound of 
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normal size is generated using vertex ‘nl’ as 
the starting point, and steps from (1) are 
repeated. A check is made to ascertain 
whether the compound is the initial one. If so, 
‘nl’ is set to K to ensure a high probability that 
the starting point for the new compound is 
well inside the feasible space. However, if the 
new centroid is feasible then steps from (5) 
below are continued. 
5. Vertex ‘nm’ is replaced by a randomly 
generated feasible point. 
6. The new centroid of all vertices except ‘nh’ 
is once again calculated, and its feasibility is 
checked. 
7. If the centroid is feasible the function value 
at the newly generated vertex ‘nm’ is 
calculated, and steps from (1) are repeated.  
Otherwise, steps from (3) are repeated. 
 
Compound Collapse on a Straight Line 
 
A compound is said to have collapsed on a 
straight line if the absolute difference between 
the i-th coordinate of the compound centroid 
and that of all K vertices becomes less than a 
specified value, making effectively a straight 
line. A resolution factor, ϕcpx is used to detect 
such a collapse. For example, if the value of i-
th coordinate of the compound centroid is v1 
and the value of that coordinate for the 
farthest vertex of that compound is v2, the 
compound will be considered to collapse if v1 
and (v1 + ϕcpx×(v2 – v1)) are identical within 
the resolution of ϕcpx. If ϕcpx is set to 10-1, the 
compound is considered collapsed if v1 and v2 
differ at the most by the least significant digit. 
If  ϕcpx is set to 10-2, the compound is 
considered collapsed if v1 and v2 differ by not 
more than the last two significant digits. Its 
value is, however, used much finer, typically 
10-11 for double precision computation. 
 
Fig. 5 shows a compound with vertices a, b, c 
and d and centroid, X, which has collapsed to 
virtually on a straight line. In terms of X2 
coordinate, the farthest vertex from the 
centroid X is ‘a’. If X2a and X2x are identical 
within the resolution of ϕcpx, then the X2 
coordinates of all vertices and the centroid 
are also identical within the resolution of ϕcpx 
and the compound ‘abcd’ is said to have 
collapsed.  
 

 
Fig. 5: Compound collapse on a straight line. 

 
On detecting such a collapse of a compound, 
the following actions are taken: 
 
1. If the compound has collapsed for the first 
time the coordinates of the centroid are 
stored. 
2. Another compound is generated with 
vertex ‘nl’ as the starting point. 
3. If the compound has collapsed 
consecutively more than once, the centroid of 
the currently collapsed compound is adjusted 
as )1(101 ccccc cpx −+= ϕ in which c1 is the 
centroid of the first collapsed compound and 
cc is the centroid of the currently collapsed 
compound. The distance between the 
centroid of the first collapsed compound and 
this adjusted centroid is calculated. 
4. If this distance is zero, a compound of 
normal size is generated with vertex ‘nl’ as 
the starting point, and no further testing for 
collapse of compound is carried out. 
5. Otherwise, whether the compound has 
collapsed consecutively for the second time is 
determined. If so, the objective function value 
fo at the centroid of the first collapsed 
compound is calculated. 
6. The function value fc at the centroid of the 
currently collapsed compound is calculated. 
7. If fc < fo, the centroid of the first collapsed 
compound is over-reflected on the centroid of 
the currently collapsed compound. 
8. Otherwise, compounds are continuously 
regenerated on each consecutive collapse 
using ‘nl’ as the starting point, and steps from 
(6) above are repeated. 
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Termination by Convergence Tests 
 
While executing the process of compound 
movement, tests for convergence are carried 
out periodically after certain preset number of 
evaluations of the objective function. Three 
levels of convergence tests are conducted. 
The first convergence test is considered 
successful if a predefined number of 
consecutive values of the objective function 
are found identical within the resolution of a 
convergence parameter, ϕ. The second test 
for convergence verifies whether the objective 
function values at all vertices of the current 
compound are also identical within the 
convergence resolution. The second test is 
conducted only if the first test has succeeded. 
The typical value of ϕ for double precision 
computation is 10-10. The value of ϕcpx for 
compound collapse detection is 
recommended to be a decade lower than ϕ 
(i.e. if ϕ = 10-10 then ϕcpx = 10-11) to avoid 
premature convergence.   
 
When both the above convergence tests are 
successful, the current optimum point is 
preserved and the whole computation 
procedure is repeated, this time starting with 
the current optimum point, to verify if there 
are any better optimum points (e.g. multi 
minima). This repetition continues as long as 
the objective function value can be improved 
within the resolution of another convergence 
parameter (the third convergence). The 
nested three-looped convergence procedure 
continues as long as the objective function 
can be improved. The major steps of 
computation in INTEMOB are summarized in 
Fig. 6. 
 
Equality Constraints and Integer/Discrete 
Variables 

It is obvious that the procedure does not 
directly deal with equality constraints in the 
form of Ljxhj ......,,2,1,0)( ==  in which L is 
the number of equality constraints. These 
equality constraints can, however, be 
satisfied by minimizing an augmented 
objective function as: 
 

∑
=

+=
L

j
jj xhxfxf

1

)()(),( λλ    (12) 

 

where λj’s are the weighting factors to 
equality constraints such that all 

)(xh j vanishes at the minimum of ),( λxf . 
 

Yes

No 

Both No 

Yes 

Yes 

Initial Design 

CHECK _FEAS: 
Is Initial Design Feasible? 

Yes 
GENFEAS: 
Generate a feasible design

INTEMOB: 
Form and move compounds 
Identify and mitigate instability 
Integerize and discretize if applicable

First convergence? 
No 

Second convergence? 
No 

GLOBAL: 
Is this the first optimum? 
or 
Is the current optimum better 
than the previous one? 

Global optimum found. Call 
user’s defined output routines if 
any. Otherwise, stop. 

 
Fig. 6: Flow-chart for INTEMOB. 

 
An integer variable is treated as continuous 
until a compound is formed with feasible 
vertices. After successful over-reflection, 
contraction and expansion of the compound, 
the variable is integerized as follows:  
 

0for1
0for1;5.0if

0for;5.0if

int

int

int

int

>+=
<−=≥∆

≥=<∆
−=∆

xxx
xxxx

xxxx
xxx

i

i

i  (13) 

 
where x is the continuous value of the 
variable to be integerized, xint is integer 
portion of x and xi is the integerized value. If xi 
from Eq. (13) violates its bounds, the 
following adjustments are made: 
 
If xi>xmax, integerize xmax to ximax with the 
same rule in Eq. (13) replacing all x’s by xmax. 
Then adjust xi as follows: 
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If ximax >xmax; xi = ximax – 1; else xi = ximax    (14) 
 
Similarly, if xi < xmin, integerise xmin to ximin with 
same rule in Eq. (13) replacing all x’s by xmin. 
Then adjust xi as follows: 
 
If ximin < xmin; xi = ximin + 1; else xi = ximin     (15)
 
A discrete variable is also initially treated as 
continuous, similar to an integer variable. 
After over-reflection, contraction and 
expansion of the compound, the variable is 
discretized as follows: 
 

ldduddldud xxxxxfxf ==< else;);()(If  (16) 
 

where xd is the discrete value of the variable; 
xud is the upper discrete value closest to its 
continuous value, x; xld is the lower discrete 
value closest to x; )( udxf is the objective 
function value with variable vector containing 
the upper discrete value, xud and )( ldxf is 
the objective function value with variable 
vector containing the lower discrete value, xld. 
If xd violates any of its bounds and/or design 
constraints, the closest upper or the lower 
discrete value will certainly satisfy such 
constraints and will replace the value of xd 
obtained from Eq. (16), because they were 
previously satisfied by its continuous value, x.  
It is important to note here that the compound 
centroid must be calculated using continuous 
values of variables and the compound 
collapse test must be bypassed if a problem 
has integer and/or discrete variables.  
 
It is important to note that a simple rounding 
strategy is not adopted to treat integer and 
discrete variables. The discrete variables are 
properly treated based on function values 
after every movement of the compound. The 
integer variables, however, are rounded after 
every movement, not at the end of 
optimization. This facilitates the movement 
along the optimum directions for most 
practical cases. Although such an 
integerization scheme is not mathematically 
correct, it produces an engineering design 
with acceptable accuracy. 
   
Multiobjective Formulation 
 
In many industrial design problems, the 
designer is required to optimize several 

conflicting objectives simultaneously. For 
such conflicting objective optimization 
problems, the designer has to be satisfied 
with a compromise solution called ‘Pareto-
optimal’. 
 
A recent review Coello and Christiansen 
(1999) has summarized the continuing 
development in multiobjective optimization. 
Bearing in mind that INTEMOB solution 
algorithm is capable to operate only on a 
single objective function for minimization, the 
author proposes a general normalized 
combined objective function as follows:  
 

minimize 
( )( )∑

=

−
=

I

i
i

i

ii P
D

TxfZ
1

  (17) 

 
where ( )xfi  is the objective function for i-th 
objective; Ti is the target value for the i-th 
objective; Di is the dividing factor for i-th 
objective equation and Pi is the priority to 
achieve the i-th objective. 
 
The target value, which is desired to achieve 
for the corresponding objective either may 
refer to a specified numerical value or can be 
calculated as a function of design variables. If 
a particular objective has no target value, that 
objective requires minimization only. This can 
be achieved by simply equating the 
corresponding Ti to zero. If necessary, any of 
the objectives can be excluded by equating 
the corresponding priority factor to zero. The 
maximization of a particular objective can be 
achieved by using either a very high target 
value for that objective, or minimizing the 
negative function for that objective.  
 
Normalization by dividing by Di is required to 
ensure contributions of equal magnitude (at 
least within some reasonable range) by the 
individual objectives to the overall combined 
objective function. This normalization factor 
eliminates the necessity for wide and trial 
variation of priority factors to obtain proper 
trade-offs among objectives, as was 
experienced by Balachandran and Gero 
(1984) using weighted scalar functions and 
prioritized goal programming functions. The 
use of the proposed equation (17), while 
carefully normalized, provided very sensitive 
trade-offs among various objectives with very 
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small changes of priority factors in several 
large-scale multiobjective optimization 
problems (Rahman and Caldwell, 1992; 
Rahman, 1996; Rahman et al., 2001).  
 
Verification Results 
 
The algorithm has been so far applied to 
numerous algebraic equations and complex 
design problems, and provided very 
satisfactory solutions. To shorten 
presentation within the scope of this paper, 
solutions of only two algebraic equations and 
two small engineering design problems will be 
presented herein. Examples of more complex 
design optimization works performed by 
INTEMOB can be found in references 
(Rahman et al., 2001; Valencia et al., 2003). 
 
An Algebraic Problem with an Exponentially 
Nonlinear Constraint 

The problem is stated as (Klingman and 
Himmelbalu, 1964): 
 

⎭
⎬
⎫

⎩
⎨
⎧ −

−−−−=
132.0

)5.0()1(exp)(Minimise
22

22
1

xxxf   18) 

 
subject to  
 

0.22.0
0.22.0

2

1

≤≤
≤≤

x
x       (19) 

 
and 
 

0.4)(10000 2
2

2
1 ≤+≤− xx .   (20) 

 
The algorithm correctly found its solution at 
the minimum, x1 =1.0 and x2 = 0.707. 
 
An Algebraic Unconstrained Problem  
 
This problem is stated as (Goldstein and 
Price, 1971): 
 

{ }
2

2121
4

22
2

2
1

)102(2
1)34(sin

)25(2
1exp)(Minimise

−++−+

−+=

xxxx

xxxf
   (21) 

 
The original problem was unconstrained. The 
following bound and design constraints were 
used for compatibility with the algorithm: 

0.50.5
0.50.5

2

1

≤≤−
≤≤−

x
x

     (22) 

 
and 
 

{ }22
2

2
1 )25(2

12182.180 −+≤− xx   (23) 

 
The algorithm correctly found coordinates of 
minimum as x1 = 3.0 and x2 = 4.0. 
 
Pressure Vessel Design with mixed 
Continuous and Discrete Variables 

The design objective is to minimize the 
combined cost of materials, forming and 
welding and also satisfy the ASME design 
code requirements (Ndiritu and Daniell, 
1999). The four design variables are the 
cylindrical shell thickness x1, the spherical 
head thickness x2, the radius of the cylindrical 
shell x3 and the length of the shell x4. The 
shell thickness and the spherical head 
thickness are required to be discrete multiples 
of 0.0625 inches according to the available 
sizes of rolled steel plates while the radius of 
the cylindrical shell and the length of the shell 
are continuous variables. Mathematically, the 
problem can be described as: 
 
Find 

{ }Txxxxx 4321 ,,,=   (24) 
 
to minimize 
 

3
2
14

2
1

2
32431

84.191611.3

7781.16224.0)(

xxxx

xxxxxxf

++

+=
      25) 

 
subject to bound constraints 
 

6020
8040

5625.64625.0
0625.65125.1

4

3

2

1

≤≤
≤≤

≤≤
≤≤

x
x

x
x

    (26) 

 
and design constraints 
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03
41728750)(

000954.0)(
00193.0)(

3
34

2
33

232

131

≤−−×=

≤−=
≤−=

ππ xxxC

xxxC
xxxC

   (27)

  
Table I: Optimum designs of pressure vessel 

by INTEMOB and other studies. 
 
Case x1 x2 x3 x4 f(x) 
Ndiritu 
and 
Daniell 
(1999) 

1.125 0.625 58.2209 44.086 7202.517 

Wu and 
Chow 
(1995) 

1.125 0.625 58.1978 44.2930 7207.497 

Sandgr
en 
(1990) 

1.125 0.625 48.97 106.72 7982.5 

Fu et 
al. 
(1991) 

1.125 0.625 48.3807 111.7449 8048.619 

INTEM
OB 

1.125 0.625 58.2367 44.0247 7204.32 

 
The problem was reformulated within the 
framework of INTEMOB and solved. The 
INTEMOB design is compared with published 
designs in Table I. The INTEMOB solution 
seems to be slightly inferior to that by Ndiritu 
and Daniell (1999). The author believes that 
this is because INTEMOB does not accept 
any percentage of infeasibility, which is 
acceptable in most of the optimization 
programs. 
 
Spring Coil Design with mixed Continuous, 
Discrete and Integer Variables 

The objective of this problem is to minimize 
the volume of wire used to manufacture a coil 
compression spring. The three design 
variables include the number of spring coils N 
which is an integer variable, the winding (coil) 
diameter D which is a continuous variable, 
and the wire diameter d which is a discrete 
variable and has to be chosen from the 
discrete values listed in Table II. The 
mathematical formulations of this problem are 
as follows: 
 

Find { } { TT dDNxxxx ,,,, 321 == }  (28) 
 

To minimise 0.4/)0.2()( 1
2
32

2 += xxxxf π      (29) 
 
Subject to bound constraints 
 

50.00090.0
00.201.0

321

3

2

1

≤≤
≤≤

≤≤

x
x

x
    (30) 

 
and design constraints 
 

0)(

0)2(05.1

)(

0)(

00.3)(

0)(
0)(

0)(

0
8

)(

max
8

31

max
7

6

3

2
5

max324

3min3

max2

3
3

2max
1

≤
−

−=

≤−++

−
+=

≤−=

≤−=

≤−+=
≤−=

≤−=

≤−=

K
FF

xC

lxx
K

FF
xC

xC
x
xxC

DxxxC
xdxC

llxC

S
x

xFC
xC

p
w

f

p
p

pmp

f

f

δ

δ

δδ

π

   (31)  

 
where 
 

K
F

xx
K

Fl

xx
GxK

x
x

xx
xxC

p
p

f

f

=

++=

=

−
−
−

=

δ

31
max

3
21

4
3

2

3

32

32

)2(05.1

8

165.0
4)(4
1)(4

 

 
Various parameters used in the design 
constraints are specified as follows: 
 
(a) the maximum working load, Fmax = 1000.0 
lb 

(b) the allowable maximum shear stress, S = 
189000.0 psi 

(c) the maximum free length, lmax = 14.0 inch 
(d) the minimum wire diameter, dmin = 0.2 inch 
(e) the maximum outside diameter of spring, 
Dmax = 3.0 inch 

(f) the preload compression force, Fp = 300.0 
lb 

(g) the allowable maximum deflection under 
preload, δpm = 6.0 inch 

(h) the deflection from preload position to 
maximum load position, δw = 1.25 inch 

(i) the shear modulus of the material, G = 
11.5×106 psi. 
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The problem was formulated within the 
framework of INTEMOB and solved. The 
INTEMOB design is compared with other 
published designs in Table III. Obviously, the 
INTEMOB solution is the best one. 
 
Table II: Allowable wire diameters for spring 

coil. 
  
0.0090 
0.0095 
0.104 
0.0118 
0.0128 
0.0132 
0.140 

0.0150 
0.0162 
0.0173 
0.0180 
0.0200 
0.0230 
0.0250 

0.0280 
0.0320 
0.0350 
0.0410 
0.0470 
0.0540 
0.0630 

0.0720 
0.0800 
0.920 
0.1050 
0.1200 
0.1350 
0.1480 

0.1620 
0.1770 
0.1920 
0.2070 
0.2250 
0.2440 
0.2630 

0.2830 
0.3070 
0.3310 
0.3620 
0.3940 
0.4375 
0.5000 

 

Table III: Optimum designs of coil spring 

Variables Objective 
function 

Design 
source 

x1
(integ.) 

x2
(cont.) 

x3
(disc.) 

f(x) 

Sandgren 
(1990) 

10 1.180701 0.283 2.7995 

Chen & 
Tsao 
(1993) 

9 1.2287 0.283 2.6709 

Wu & 
Chow 
(1995) 

9 1.227411 0.283 2.6681 

INTEMOB 9 1.16 0.265 2.205 
 
Convergence Test 
 
Due to the relatively simple nature of the 
above example problems, the global 
optimization loop converged (the third 
convergence) with a very few iterations. This 
may however take a reasonable number of 
global iterations for large-scale, real-world, 
complex engineering problems. The 
convergence history of such a large 
engineering design optimization problem 
(Rahman et al., 2001) is presented in Figure 
7. The problem was to optimize hydraulic 
fracture treatments for a gas reservoir while 
maximizing the Net Present Value (NPV) 
considering gas production over 10 years. 
The calculation of NPV as the objective 
function for INTEMOB, and that of 10 highly 
nonlinear constraint functions was very 
computation intensive. This involved a large 
number of subroutines each of which 
contained numerous internal iterative loops 
and evaluation of complementary error 
functions. These made the objective and 
constraint functions nondifferentiable and 

discontinuous. The optimization process was 
started with three very different initial designs, 
which eventually converged to the same 
optimum design within 80 redesign iterations 
(restart for global optimization). As per the 
inherent mechanism of compound 
reconfiguration, only the initial design may be 
infeasible; every subsequent design is 
feasible and better than its predecessors. As 
can be seen in Figure 7, the algorithm has not 
only found the same optimum design through 
such compound reconfiguration, but it has 
also overcome a number of local optima 
terrains in order to reach the final optimum. 
Running the algorithm on a typical personal 
computer, the total real time to find a global 
optimum design took about 40 seconds. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Convergence to optimum design from 

different initial designs. 
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Conclusions 
 
The role of optimization in engineering design 
is logically established and wide-range 
capabilities of optimization tools are identified 
to deal with real-world engineering problems 
of various natures. Basic principles, 
capabilities and limitations of various 
optimization methods in different classes 
have been briefly reviewed.  
 
For many real-world engineering design 
problems, benefits of direct search methods 
are highlighted. The proposed moving object 
algorithm, INTEMOB is developed and coded 
by adding a number of features to a classical 
evolutionary algorithm to enhance its 
capability to handle engineering design 
problems of varying natures. Special features 
of the algorithm, such as, mitigation of 
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numerical instability, sequential restarting to 
establish the global optimum and dealing with 
equality constraints, integer variables, 
discrete variables and multiple conflicting 
objectives are presented in details.  
 
The algorithm was verified with a wide range 
of algebraic problems and real-world 
engineering design problems. Within the 
scope of this paper, solutions of two algebraic 
problems and two relatively simple 
engineering design problems have been 
compared with known solutions, and the 
capability of the algorithm to find the actual 
optimum solution has been proved.  
References are made to large-scale 
optimization works performed by INTEMOB. 
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