
A Direct-Search Optimization Algorithm for Complex Design
Problems

Md. Khalilur Rahmana

Abstract

This paper presents a direct-search algorithm
for design optimization of engineering
problems having mixed variables (continuous,
discrete and integer); nonlinear, non-
differential and discontinuous design
constraints and conflicting multiobjective
functions. The intelligent movement of objects
(vertices and compounds) is simulated in the
algorithm based on Nelder-Mead simplex with
added features to handle variable types,
bound and design constraints, local optima,
search initiation from an infeasible region and
numerical instability, which are common
requirements for large-scale, complex
optimization problems. The algorithm is called
INTEMOB (INTElligent Moving OBjects) and
tested for a wide range of algebraic problems,
simple engineering design problems and
large-scale, complex engineering problems.
Validation results for several examples, which
are manageable within the scope of this
paper, are presented herein, and references
are provided for large-scale problems that
were solved by INTEMOB.

Introduction

Optimization usually involves maximization or
minimization of a function f(x1, x2, ….., xN) of
several variables x1, x2, ….., xN subject to a
set of constraints. To solve linear optimization
problems, the simplex algorithm is a powerful
tool and its primal and dual applications are
widely documented. Most industrial design
problems, however, involve nonlinear
objective and constraint functions. The
Sequential Linear Programming (SLP) has
been a good tool for solving nonlinear
problems (Mistree, et al., 1981) through a
series of linear approximations.

Quadratic Programming (QP) was also
introduced to solve nonlinear problems.
Various QP algorithms include the primal

method (Goldfarb, 1972), the dual method
(Goldfarb and Idnani, 1983), the principal
pivoting method (Cottle and Dantzig, 1968),
the parametric method (Grigoriadis and Ritter,
1969), the primal-dual method (Goncalves,
1972) and the subproblem optimization
method (Theil and Van-De-Oanne, 1960).
Like SLP, the sequential applications of QP to
enhance its solution capability for higher-
order nonlinear problems led to the
development of Sequential Quadratic
Programming (SQP) techniques (Gurwitz and
Overton, 1989; Murray and Prieto, 1995;
Spellucci, 1998). Other classical methods for
continuous variable optimization include
mathematical programming (Rao, 1984),
geometric programming (Peterson, 1976),
optimality criteria (Berke and Venkayya,
1974) and Augmented Lagrangian (Pierre
and Lowe, 1975) methods.

Most of the methods mentioned above are
based on classical differential calculus, and
require continuous differentiability, availability
of gradient vectors and existence of second
derivatives. For problems with differentiable
smooth functions, these derivative based
methods are usually reliable and
computationally efficient. Many real-world
engineering design problems, however,
involve discontinuous and non-differentiable
functions, design variables requiring a
combination of continuous, integer and
discrete values and conflicting multiple design
objectives. The difficulty of non-
differentiability in using the methods is
attempted to overcome by various numerical
differentiation techniques with various
degrees of accuracy; however, they often
suffer from numerical instability. On the other
hand, manipulations of the original problem
by SLP, SQP or special techniques
incorporated in classical methods provide a
solution to an approximate problem, not the
exact problem.

__
a School of Oil & Gas Engineering, UWA, Perth, Australia, (Email: krahman@cyllene.uwa.edu.au)

2 ASOR Bulletin, Volume 23 Number 2, June 2004

To overcome many of the above difficulties
with gradient-based methods, various direct-
search methods evolved over the time. Some
examples include normal-boundary
intersection algorithm (NBI) (Das and Dennis,
1998), genetic algorithms (GA) (Ndiritu and
Daniell, 1999; Wu and Chow, 1995), entropy
algorithms (Das et al., 1999) and evolutionary
operation (EVOP) (Ghani, 1989). Direct
search methods, such as GA, PA and EVOP
are generally slow in convergence but are
successful to find reliable optimum solutions
of problems having high degree of various
noises including discontinuity and non-
differentiability in functions. Because of these
features, many direct search methods are
increasingly becoming popular with the
advent of ultra-fast computing facilities, and
therefore there is ever growing needs to
improve various features of these methods,
as has been attempted in this work.

The main objectives of this paper are (1) to
present the basic principle of an optimization
algorithm capable to handle conveniently the
above-mentioned complex natures of real-
world engineering problems, (2) to present
validation results for pure algebraic as well as
engineering design problems that are
manageable within the scope of this paper,
(3) to provide further references to large-scale
complex design problems that have been
solved by the algorithm.

Proposed Algorithm: INTEMOB

The simplex algorithm of Nelder and Mead
(1965) is one widely used contribution to
direct-search optimization algorithms. It has
also been the basis of the proposed algorithm
because of its inherent capability to move a
point to a minimum vertex of a function
without requiring any derivative information;
thus, conveniently handling non-differentiable
and even discontinuous functions. The
original simplex, however, did not incorporate
any features to consider nonlinear design
constraints, non-continuous variables
(discrete, integer) and the presence of local
minima/maxima. It was a strict requirement to
initiate search with vertices within the feasible
space. Bounds on variables were possible to
consider by complex logarithmic scale
transformation. Also it did not have any

scheme to mitigate non-convergence
numerical instability. Due to the lack of such
features, the original simplex was not
applicable to most real-world engineering
problems, and was unreliable even in some
fairly simple situations (McKinnon, 1998).
Various attempts have been made to
overcome some of the short comings (Ghani,
1972; Lagarias et al., 1998). This author
incorporated and coded the following
additional features: (1) starting of the
optimization process with only one initial point
which may also be in the feasible or infeasible
space (very important, because finding even
one feasible point manually may be a very
exhaustive task for large and complex design
problems), (2) direct handling of bounds on
design variables, (3) handling of design
constraints of any nature, (4) handling of
discrete/integer variables, (5) mitigating
potential numerical instabilities, and (6) a
global optimization loop to overcome local
minima/maxima.

The modified algorithm with the above-
mentioned additional features is called in this
paper, INTEMOB (an INTElligent Moving
OBject), because it finds optimum solution by
generating and moving an object (called
‘compound’) using ‘intelligence’ more than
mathematics.

The general framework of INTEMOB can be
expressed as:

Find

{ }Ni xxxx ,...,..,,, 21
T =x (1)

subject to bound constraints

⎪
⎪
⎭

⎪
⎪
⎬

⎫

≤≤

≤≤

NNN uxl

uxl

...

...
111

 (2)

and design constraints

⎪
⎪
⎭

⎪
⎪
⎬

⎫

≤≤

≤≤

uMMlM

ul

CxCC

CxCC

)(
...
...

)(111

 (3)

ASOR Bulletin, Volume 23 Number 2, June 2004 3

to minimize

)(xfZ = (4)

where, x represents the vector of free design
variables (the superscript 'T' for transpose);
li's and ui's are constants or functions of x (in
the latter case the bound constraints
constitute moving boundaries) representing
the ranges of xi's; Cli's and Cui's are constants
or functions of x representing the ranges of
design constraints,)(xCi 's, which must not
be violated by the optimum design; N is the
total number of free design variables and M is
the total number of design constraints; f(x) is
the final function to be minimized,
representing either a single design objective
or a formulated multiobjective function.

INTEMOB Solution Procedure

The solution procedure of INTEMOB includes
4 major steps: (1) generation of ‘vertices’ and
formation of a ‘compound’; (2) moving a
compound (3) identifying and mitigating
numerical instability; and (4) terminating the
process by convergence tests.

Generating Vertexes and Compounds

The optimization procedure starts with an
initial vertex (also called point, design) in the
N-dimensional space bounded by the ranges
of design variables, as shown in Fig. 1 in a
two-dimensional space for the convenience of
description. Straight lines (l1, u1 and l2, u2)
parallel to the co-ordinate axes represent the
lower and upper bounds on variables, x1 and
x2, respectively. Curved lines Cl1 and Cu1
represents the lower and upper bounds,
respectively, on design constraint 1, C1(x),
and Cl2 and Cu2 on design constraint 2, C2(x).
Certainly, there could be more than these two
design constraints and their lower and upper
bounds. The hatched area is the two-
dimensional feasible search space. The initial
vertex must be within the variable bounds,
and may or may not satisfy the design
constraints. If the initial vertex does not
satisfy any of the design constraints (i.e. not
within the hatched area), a random vertex is
generated as follows:

Nilurlx iiiii,,1);(=−+= (5)

A value of ri is generated between 0 and 1 for
the i-th coordinate by a random number
generator. Any random number generator
routine can be used for this purpose. From
this point onward, whenever the generation of
a vertex (point) or a compound is mentioned
that basically means the random number
generator subroutine in INTEMOB is called as
required.

If the generated random vertex is still in the
infeasible region, it is moved stepwise
halftimes the distance between the initial
vertex and the generated vertex along the
straight line with these two vertices. After
each movement, the design constraints are
checked and the process is continued until
the vertex satisfies all the design constraints.
If the positive step-length moves the vertex
away from the unsatisfied design constraint
bound(s), a negative step-length is used. The
half-step movement process will be further
obvious from Eq. (6). The vertex ‘a’ in Fig.1 is
either an initial feasible vertex, or a randomly
generated feasible vertex, or feasible vertex
through the movement. This overcomes the
strict requirement for an initial feasible vertex.

Fig. 1: Generation of initial compound.

Once a feasible vertex is established, Eq. (5)
is executed further K-1 times to generate
further K-1 different random vertices, where K
= 2N for N ≤ 5 and K = N + 1 for N > 5. Note
that the Nelder-Mead simplex requires N+1
vertices for an N-dimensional space, whereas
this author has used 2N vertices for low-
dimensional spaces based on experience of
better convergence to a minimum. Equation

4 ASOR Bulletin, Volume 23 Number 2, June 2004

(5) itself ensures that the randomly generated
vertices remain in the space bounded by the
ranges of variables defined by Eq. (2).
However, any of the generated points may
initially violate any of the design constraints
defined by Eq. (3) and therefore a technique
is required to move such points towards
satisfying Eq. (3). The four vertices for the
two-dimensional space (2N) a, b', c' and d'
are also shown in Fig. 1. Obviously, vertices
b', c' and d' violate Eq. (3). These vertices are
modified in the order of d', c' and b' by moving
successively towards the centriod, c by:

(xcx ′+=
2
1) (6)

until the new point, x satisfies Eq. (3). The
coordinates of the cenrtriod, c are calculated
using vertices that have already satisfied Eq.
(3) as follows:

 ∑
=

=
n

i
ii x

n
c

1

1 (7)

where n is the number of vertices which have
already satisfied Eq. (3).

The modified points are a, b, c and d which
satisfy both Eqs. (2) and (3). These four
feasible vertices comprise an object called
‘compound’ abcd, as shown in Fig. 1. The
values of the objective function, f(a), f(b), f(c)
and f(d) at these four vertices are calculated
and assumed to be in the order of
f(a)<f(b)<f(c)<f(d). If the initial notations of
vertices do not satisfy this order, vertices are
re-denoted according to this order.

For a convex feasible parameter space the
above method for moving an infeasible vertex
to the feasible space would always succeed
in generating a compound with K vertices.
However, if the parameter space is
nonconvex, and the centroid happens to lie in
the infeasible area, there is every chance that
a compound can not be generated. Fig. 2
shows such a possibility. Three vertices a, b
and c in the feasible space have already been
generated. The fourth vertex, e.g. a trial point
T1, satisfies the variable bounds, but violates
a design constraint. To move T1 in the
feasible space it is continually moved halfway
towards the centroid, X. Since the centroid
itself is infeasible no amount of such moves

would make T1 feasible, and a compound with
four vertices can never be generated.
Safeguard against such a possibility is never
to allow an infeasible centroid. If a new
feasible vertex results in the new centroid to
lie in the infeasible area, that new vertex is
discarded, and another generated until a
feasible centroid is obtained.

Fig.2: Centroid in the infeasible space can not

generate a compound.

Moving a Compound

A compound is moved in this algorithm by
shifting its worst vertex towards an optimum
location in the feasible space. To initiate the
compound movement, the compound vertices
having highest, second highest and the
lowest objective function values are identified
and numbered by integers ‘nh’, ‘nm’ and ‘nl’,
respectively. For our two-dimensional
example, these correspond to f(d), f(c) and
f(a), respectively. The movement process
begins by over-reflecting the worst vertex ‘nh’
of a compound on the feasible centroid, c, of
the remaining vertices. This over-reflection
generates a new trial point tx :

() nht xcx αα −+= .1 (8)

where α is the reflection coefficient in the
range of 1.0 to 2.0 and the vector

nhx contains the coordinate values of vertex
‘nh’. If a coordinate value of the trial point
violates its any of the bounds, that coordinate
is just shifted inside the violated bound by a
small distance, i.e. δ±= ba xx , where xa is
the adjusted coordinate, xb is the bound value
that was violated by that coordinate, and δ is

ASOR Bulletin, Volume 23 Number 2, June 2004 5

a very small value, 10-12 is used for double
precision computation. If any design
constraint is violated, the trial point is
repeatedly moved halfway towards the
centroid of the rest of the vertices (i.e.
excluding the vertex ‘nh’ and the trial point

tx) in the compound until the constraint is
satisfied. The new trial point that satisfies all
the variable bounds and design constraints is
called feasible trial point, ftx .

Fig. 3: Unsuccessful over-reflection and first

type of contraction.

The function value at the feasible trial point,

ft
 is next evaluated. The reflection step is

considered successful if the objective function
value at this new trial point is lower than that
at vertex ‘nm’. The current vertex ‘nh’ is then
deleted, the vertex ‘nm’ is redefined as vertex
‘nh’ and vertices ‘nm’ and ‘nl’ are redefined
according to new objective function values to
form a new and superior compound. If,
however, the objective function value at the
trial point is greater than that at vertex ‘nm’ of
the current compound, the trial point would
still be the worst vertex in the new compound.
The reflection step is, therefore, considered
not successful enough and a contraction step
is applied. Depending on the outcome of
current over-reflection, any of the following
three contraction schemes is applied.

x

If)()()(nhftnm xfxfxf <≤ , the trial point
suffers from excessive over-reflection, and
the coordinates of a new trial point x is
generated as:

() nhxcx ββ −+= .1 (9)

If)()(nhft xfxf ≥ , the coordinates of the
new trial point are estimated as:

 ()cxx nh ββ −+= .1 (10)

In Eqs. (9) and (10), the range of β is 0.0 to
1.0. Note that Eq. (9) is an additional feature
to enforce accelerated improvements in the
objective function.

The third type of contraction is generation of a
small compound using vertex ‘nl’ as the
starting point. This type of contraction is
applied only after first and second types of
contraction (Eqs. 9 and 10, respectively) have
been previously applied consecutively for
more than 2K times.

Fig. 3 explains the first type of contraction for
the two-dimensional example. The worst
vertex, d of the current compound ‘abcd’ is
over-reflected on the feasible centroid, X of
‘abc’. The trial point, T1 so obtained is moved
just inside the variable bound to T2 as x2 = l2 +
δ, which still violates a design constraint. T2 is
moved towards the centroid, X according to
half-step procedure, as described in the
previous section, along the line joining T2 and
X resulting in a completely feasible trial point,
T3. Function value at T3 is calculated, and
found to be intermediate between the second
highest function value at vertex, c, and the
highest function value at vertex, d. If the
vertex, d is replaced by the feasible trial point,
T3 to form a new compound ‘abcT3’, then T3
would be the worst vertex in the new
compound. Although it is an improved
compound, this reflection step is considered
not successful enough to change the
compound configuration by changing the
order of superiority among vertices. To
enforce this, point T3 is rejected, and the first
type of contraction (Eq. 9) is applied. Due to
this contraction, the worst vertex, d is now
under-reflected on the feasible centroid, X to
T4. Since the trial point, T4 violates a design
constraint it is moved halfway towards the
centroid to T5. The trial point, T5 is feasible,
and replaces the worst vertex, d to form a
new complex ‘abcT5’. The trial point, T4 would
have been on the other side of X, i.e. closer

6 ASOR Bulletin, Volume 23 Number 2, June 2004

to vertex, d in case the second type of
contraction was necessary to apply. Then the
movement of this point, if it were in the
infeasible region, to the feasible space would
have been similar.

If on over-reflection the trial point has not
violated any constraints (i.e. tx and ftx are
identical without any movement), and has an
objective function value lower than the lowest
function value at vertex ‘nl’ of the current
compound (i.e.)()(nlt xfxf <), and the
previous action was not contraction by any of
the three schemes above, this over-reflection
is considered over-successful. An expansion
attempt is then taken to generate a new trial
point further away from the feasible centroid
along the same straight line used for over-
reflection. The co-ordinates of this expanded
trial point is given by:

 ()cxx te γγ −+= .1 (11)

The usual range of γ is 1.0-3.0. The feasibility
of this expanded trial point, ex is checked. If
any of variable bounds or design constraints
is violated, the expansion attempt is
considered unsuccessful, and a new
compound is formed with the over-reflected
feasible trial point tx that replaces the worst
vertex ‘nh’ of the current compound.
Otherwise, the objective function value at

ex is evaluated. If)()(te xfxf < , the
expansion attempt is considered successful.
The expanded vertex, ex then replaces the
worst vertex ‘nh’ to form the new compound.
If)()(te xfxf ≥ , the expansion attempt is
also considered unsuccessful. The expanded
vertex, ex is rejected and the trial point, tx is
used to form the new compound.

The next cycle of compound movement is
started with the current compound improved
through the above-described procedure.

Mitigating Numerical Instability

Two types of numerical instability are
experienced during repeated compound
movement: (1) collapse of a compound on an
infeasible centroid, and (2) collapse of a
compound on a straight line.

Fig. 4: Collapse on infeasible centroid.

Compound Centroid in Infeasible Space

If the search space is non-convex, there is a
possibility that the compound would collapse
due to shifting by over-reflection. For
example, referring to Fig. 4, the worst point, d
is reflected over the centroid, X to create a
trial point, T1, which violates a design
constraint. Since the centroid itself is in the
infeasible region, repeated movement of
point, T1 halfway towards the centroid would
result in collapse of the point on the centroid.
Collapsing of a point on the centroid means
their corresponding coordinate values are
equal within a pre-specified resolution. The
new compound has now three vertices a, b
and c. One more such collapse would result
in complete collapse of the compound,
because an object with two vertices can not
span in a two dimensional space. Note that a
compound not to collapse in an N-
dimensional space, K ≥ (N+1) must be
satisfied.

This collapse problem can be overcome as
follows:

1. The centroid of all vertices except ‘nh’ is
calculated, and its feasibility is verified.
2. If the centroid is feasible, the steps below
here are not necessary and the process then
passes on to testing for collapse on a straight
line. Otherwise, continue from (3) below.
3. Vertex ‘nm’ is excluded, and the centroid
of all other vertices is calculated (i.e.
excluding vertices ‘nh’ and ‘nm’).
4. If the centroid is in the feasible space then
continue from (5) below. Otherwise, if the
centroid is infeasible a new compound of

ASOR Bulletin, Volume 23 Number 2, June 2004 7

normal size is generated using vertex ‘nl’ as
the starting point, and steps from (1) are
repeated. A check is made to ascertain
whether the compound is the initial one. If so,
‘nl’ is set to K to ensure a high probability that
the starting point for the new compound is
well inside the feasible space. However, if the
new centroid is feasible then steps from (5)
below are continued.
5. Vertex ‘nm’ is replaced by a randomly
generated feasible point.
6. The new centroid of all vertices except ‘nh’
is once again calculated, and its feasibility is
checked.
7. If the centroid is feasible the function value
at the newly generated vertex ‘nm’ is
calculated, and steps from (1) are repeated.
Otherwise, steps from (3) are repeated.

Compound Collapse on a Straight Line

A compound is said to have collapsed on a
straight line if the absolute difference between
the i-th coordinate of the compound centroid
and that of all K vertices becomes less than a
specified value, making effectively a straight
line. A resolution factor, ϕcpx is used to detect
such a collapse. For example, if the value of i-
th coordinate of the compound centroid is v1
and the value of that coordinate for the
farthest vertex of that compound is v2, the
compound will be considered to collapse if v1
and (v1 + ϕcpx×(v2 – v1)) are identical within
the resolution of ϕcpx. If ϕcpx is set to 10-1, the
compound is considered collapsed if v1 and v2
differ at the most by the least significant digit.
If ϕcpx is set to 10-2, the compound is
considered collapsed if v1 and v2 differ by not
more than the last two significant digits. Its
value is, however, used much finer, typically
10-11 for double precision computation.

Fig. 5 shows a compound with vertices a, b, c
and d and centroid, X, which has collapsed to
virtually on a straight line. In terms of X2
coordinate, the farthest vertex from the
centroid X is ‘a’. If X2a and X2x are identical
within the resolution of ϕcpx, then the X2
coordinates of all vertices and the centroid
are also identical within the resolution of ϕcpx
and the compound ‘abcd’ is said to have
collapsed.

Fig. 5: Compound collapse on a straight line.

On detecting such a collapse of a compound,
the following actions are taken:

1. If the compound has collapsed for the first
time the coordinates of the centroid are
stored.
2. Another compound is generated with
vertex ‘nl’ as the starting point.
3. If the compound has collapsed
consecutively more than once, the centroid of
the currently collapsed compound is adjusted
as)1(101 ccccc cpx −+= ϕ in which c1 is the
centroid of the first collapsed compound and
cc is the centroid of the currently collapsed
compound. The distance between the
centroid of the first collapsed compound and
this adjusted centroid is calculated.
4. If this distance is zero, a compound of
normal size is generated with vertex ‘nl’ as
the starting point, and no further testing for
collapse of compound is carried out.
5. Otherwise, whether the compound has
collapsed consecutively for the second time is
determined. If so, the objective function value
fo at the centroid of the first collapsed
compound is calculated.
6. The function value fc at the centroid of the
currently collapsed compound is calculated.
7. If fc < fo, the centroid of the first collapsed
compound is over-reflected on the centroid of
the currently collapsed compound.
8. Otherwise, compounds are continuously
regenerated on each consecutive collapse
using ‘nl’ as the starting point, and steps from
(6) above are repeated.

8 ASOR Bulletin, Volume 23 Number 2, June 2004

Termination by Convergence Tests

While executing the process of compound
movement, tests for convergence are carried
out periodically after certain preset number of
evaluations of the objective function. Three
levels of convergence tests are conducted.
The first convergence test is considered
successful if a predefined number of
consecutive values of the objective function
are found identical within the resolution of a
convergence parameter, ϕ. The second test
for convergence verifies whether the objective
function values at all vertices of the current
compound are also identical within the
convergence resolution. The second test is
conducted only if the first test has succeeded.
The typical value of ϕ for double precision
computation is 10-10. The value of ϕcpx for
compound collapse detection is
recommended to be a decade lower than ϕ
(i.e. if ϕ = 10-10 then ϕcpx = 10-11) to avoid
premature convergence.

When both the above convergence tests are
successful, the current optimum point is
preserved and the whole computation
procedure is repeated, this time starting with
the current optimum point, to verify if there
are any better optimum points (e.g. multi
minima). This repetition continues as long as
the objective function value can be improved
within the resolution of another convergence
parameter (the third convergence). The
nested three-looped convergence procedure
continues as long as the objective function
can be improved. The major steps of
computation in INTEMOB are summarized in
Fig. 6.

Equality Constraints and Integer/Discrete
Variables

It is obvious that the procedure does not
directly deal with equality constraints in the
form of Ljxhj,,2,1,0)(== in which L is
the number of equality constraints. These
equality constraints can, however, be
satisfied by minimizing an augmented
objective function as:

∑
=

+=
L

j
jj xhxfxf

1

)()(),(λλ (12)

where λj’s are the weighting factors to
equality constraints such that all

)(xh j vanishes at the minimum of),(λxf .

Yes

No

Both No

Yes

Yes

Initial Design

CHECK _FEAS:
Is Initial Design Feasible?

Yes
GENFEAS:
Generate a feasible design

INTEMOB:
Form and move compounds
Identify and mitigate instability
Integerize and discretize if applicable

First convergence?
No

Second convergence?
No

GLOBAL:
Is this the first optimum?
or
Is the current optimum better
than the previous one?

Global optimum found. Call
user’s defined output routines if
any. Otherwise, stop.

Fig. 6: Flow-chart for INTEMOB.

An integer variable is treated as continuous
until a compound is formed with feasible
vertices. After successful over-reflection,
contraction and expansion of the compound,
the variable is integerized as follows:

0for1
0for1;5.0if

0for;5.0if

int

int

int

int

>+=
<−=≥∆

≥=<∆
−=∆

xxx
xxxx

xxxx
xxx

i

i

i (13)

where x is the continuous value of the
variable to be integerized, xint is integer
portion of x and xi is the integerized value. If xi
from Eq. (13) violates its bounds, the
following adjustments are made:

If xi>xmax, integerize xmax to ximax with the
same rule in Eq. (13) replacing all x’s by xmax.
Then adjust xi as follows:

ASOR Bulletin, Volume 23 Number 2, June 2004 9

If ximax >xmax; xi = ximax – 1; else xi = ximax (14)

Similarly, if xi < xmin, integerise xmin to ximin with
same rule in Eq. (13) replacing all x’s by xmin.
Then adjust xi as follows:

If ximin < xmin; xi = ximin + 1; else xi = ximin (15)

A discrete variable is also initially treated as
continuous, similar to an integer variable.
After over-reflection, contraction and
expansion of the compound, the variable is
discretized as follows:

ldduddldud xxxxxfxf ==< else;);()(If (16)

where xd is the discrete value of the variable;
xud is the upper discrete value closest to its
continuous value, x; xld is the lower discrete
value closest to x;)(udxf is the objective
function value with variable vector containing
the upper discrete value, xud and)(ldxf is
the objective function value with variable
vector containing the lower discrete value, xld.
If xd violates any of its bounds and/or design
constraints, the closest upper or the lower
discrete value will certainly satisfy such
constraints and will replace the value of xd
obtained from Eq. (16), because they were
previously satisfied by its continuous value, x.
It is important to note here that the compound
centroid must be calculated using continuous
values of variables and the compound
collapse test must be bypassed if a problem
has integer and/or discrete variables.

It is important to note that a simple rounding
strategy is not adopted to treat integer and
discrete variables. The discrete variables are
properly treated based on function values
after every movement of the compound. The
integer variables, however, are rounded after
every movement, not at the end of
optimization. This facilitates the movement
along the optimum directions for most
practical cases. Although such an
integerization scheme is not mathematically
correct, it produces an engineering design
with acceptable accuracy.

Multiobjective Formulation

In many industrial design problems, the
designer is required to optimize several

conflicting objectives simultaneously. For
such conflicting objective optimization
problems, the designer has to be satisfied
with a compromise solution called ‘Pareto-
optimal’.

A recent review Coello and Christiansen
(1999) has summarized the continuing
development in multiobjective optimization.
Bearing in mind that INTEMOB solution
algorithm is capable to operate only on a
single objective function for minimization, the
author proposes a general normalized
combined objective function as follows:

minimize
()()∑

=

−
=

I

i
i

i

ii P
D

TxfZ
1

 (17)

where ()xfi is the objective function for i-th
objective; Ti is the target value for the i-th
objective; Di is the dividing factor for i-th
objective equation and Pi is the priority to
achieve the i-th objective.

The target value, which is desired to achieve
for the corresponding objective either may
refer to a specified numerical value or can be
calculated as a function of design variables. If
a particular objective has no target value, that
objective requires minimization only. This can
be achieved by simply equating the
corresponding Ti to zero. If necessary, any of
the objectives can be excluded by equating
the corresponding priority factor to zero. The
maximization of a particular objective can be
achieved by using either a very high target
value for that objective, or minimizing the
negative function for that objective.

Normalization by dividing by Di is required to
ensure contributions of equal magnitude (at
least within some reasonable range) by the
individual objectives to the overall combined
objective function. This normalization factor
eliminates the necessity for wide and trial
variation of priority factors to obtain proper
trade-offs among objectives, as was
experienced by Balachandran and Gero
(1984) using weighted scalar functions and
prioritized goal programming functions. The
use of the proposed equation (17), while
carefully normalized, provided very sensitive
trade-offs among various objectives with very

10 ASOR Bulletin, Volume 23 Number 2, June 2004

small changes of priority factors in several
large-scale multiobjective optimization
problems (Rahman and Caldwell, 1992;
Rahman, 1996; Rahman et al., 2001).

Verification Results

The algorithm has been so far applied to
numerous algebraic equations and complex
design problems, and provided very
satisfactory solutions. To shorten
presentation within the scope of this paper,
solutions of only two algebraic equations and
two small engineering design problems will be
presented herein. Examples of more complex
design optimization works performed by
INTEMOB can be found in references
(Rahman et al., 2001; Valencia et al., 2003).

An Algebraic Problem with an Exponentially
Nonlinear Constraint

The problem is stated as (Klingman and
Himmelbalu, 1964):

⎭
⎬
⎫

⎩
⎨
⎧ −

−−−−=
132.0

)5.0()1(exp)(Minimise
22

22
1

xxxf 18)

subject to

0.22.0
0.22.0

2

1

≤≤
≤≤

x
x (19)

and

0.4)(10000 2
2

2
1 ≤+≤− xx . (20)

The algorithm correctly found its solution at
the minimum, x1 =1.0 and x2 = 0.707.

An Algebraic Unconstrained Problem

This problem is stated as (Goldstein and
Price, 1971):

{ }
2

2121
4

22
2

2
1

)102(2
1)34(sin

)25(2
1exp)(Minimise

−++−+

−+=

xxxx

xxxf
 (21)

The original problem was unconstrained. The
following bound and design constraints were
used for compatibility with the algorithm:

0.50.5
0.50.5

2

1

≤≤−
≤≤−

x
x

 (22)

and

{ }22
2

2
1)25(2

12182.180 −+≤− xx (23)

The algorithm correctly found coordinates of
minimum as x1 = 3.0 and x2 = 4.0.

Pressure Vessel Design with mixed
Continuous and Discrete Variables

The design objective is to minimize the
combined cost of materials, forming and
welding and also satisfy the ASME design
code requirements (Ndiritu and Daniell,
1999). The four design variables are the
cylindrical shell thickness x1, the spherical
head thickness x2, the radius of the cylindrical
shell x3 and the length of the shell x4. The
shell thickness and the spherical head
thickness are required to be discrete multiples
of 0.0625 inches according to the available
sizes of rolled steel plates while the radius of
the cylindrical shell and the length of the shell
are continuous variables. Mathematically, the
problem can be described as:

Find

{ }Txxxxx 4321 ,,,= (24)

to minimize

3
2
14

2
1

2
32431

84.191611.3

7781.16224.0)(

xxxx

xxxxxxf

++

+=
 25)

subject to bound constraints

6020
8040

5625.64625.0
0625.65125.1

4

3

2

1

≤≤
≤≤

≤≤
≤≤

x
x

x
x

 (26)

and design constraints

ASOR Bulletin, Volume 23 Number 2, June 2004 11

03
41728750)(

000954.0)(
00193.0)(

3
34

2
33

232

131

≤−−×=

≤−=
≤−=

ππ xxxC

xxxC
xxxC

 (27)

Table I: Optimum designs of pressure vessel

by INTEMOB and other studies.

Case x1 x2 x3 x4 f(x)
Ndiritu
and
Daniell
(1999)

1.125 0.625 58.2209 44.086 7202.517

Wu and
Chow
(1995)

1.125 0.625 58.1978 44.2930 7207.497

Sandgr
en
(1990)

1.125 0.625 48.97 106.72 7982.5

Fu et
al.
(1991)

1.125 0.625 48.3807 111.7449 8048.619

INTEM
OB

1.125 0.625 58.2367 44.0247 7204.32

The problem was reformulated within the
framework of INTEMOB and solved. The
INTEMOB design is compared with published
designs in Table I. The INTEMOB solution
seems to be slightly inferior to that by Ndiritu
and Daniell (1999). The author believes that
this is because INTEMOB does not accept
any percentage of infeasibility, which is
acceptable in most of the optimization
programs.

Spring Coil Design with mixed Continuous,
Discrete and Integer Variables

The objective of this problem is to minimize
the volume of wire used to manufacture a coil
compression spring. The three design
variables include the number of spring coils N
which is an integer variable, the winding (coil)
diameter D which is a continuous variable,
and the wire diameter d which is a discrete
variable and has to be chosen from the
discrete values listed in Table II. The
mathematical formulations of this problem are
as follows:

Find { } { TT dDNxxxx ,,,, 321 == } (28)

To minimise 0.4/)0.2()(1
2
32

2 += xxxxf π (29)

Subject to bound constraints

50.00090.0
00.201.0

321

3

2

1

≤≤
≤≤

≤≤

x
x

x
 (30)

and design constraints

0)(

0)2(05.1

)(

0)(

00.3)(

0)(
0)(

0)(

0
8

)(

max
8

31

max
7

6

3

2
5

max324

3min3

max2

3
3

2max
1

≤
−

−=

≤−++

−
+=

≤−=

≤−=

≤−+=
≤−=

≤−=

≤−=

K
FF

xC

lxx
K

FF
xC

xC
x
xxC

DxxxC
xdxC

llxC

S
x

xFC
xC

p
w

f

p
p

pmp

f

f

δ

δ

δδ

π

 (31)

where

K
F

xx
K

Fl

xx
GxK

x
x

xx
xxC

p
p

f

f

=

++=

=

−
−
−

=

δ

31
max

3
21

4
3

2

3

32

32

)2(05.1

8

165.0
4)(4
1)(4

Various parameters used in the design
constraints are specified as follows:

(a) the maximum working load, Fmax = 1000.0
lb

(b) the allowable maximum shear stress, S =
189000.0 psi

(c) the maximum free length, lmax = 14.0 inch
(d) the minimum wire diameter, dmin = 0.2 inch
(e) the maximum outside diameter of spring,
Dmax = 3.0 inch

(f) the preload compression force, Fp = 300.0
lb

(g) the allowable maximum deflection under
preload, δpm = 6.0 inch

(h) the deflection from preload position to
maximum load position, δw = 1.25 inch

(i) the shear modulus of the material, G =
11.5×106 psi.

12 ASOR Bulletin, Volume 23 Number 2, June 2004

The problem was formulated within the
framework of INTEMOB and solved. The
INTEMOB design is compared with other
published designs in Table III. Obviously, the
INTEMOB solution is the best one.

Table II: Allowable wire diameters for spring

coil.

0.0090
0.0095
0.104
0.0118
0.0128
0.0132
0.140

0.0150
0.0162
0.0173
0.0180
0.0200
0.0230
0.0250

0.0280
0.0320
0.0350
0.0410
0.0470
0.0540
0.0630

0.0720
0.0800
0.920
0.1050
0.1200
0.1350
0.1480

0.1620
0.1770
0.1920
0.2070
0.2250
0.2440
0.2630

0.2830
0.3070
0.3310
0.3620
0.3940
0.4375
0.5000

Table III: Optimum designs of coil spring

Variables Objective
function

Design
source

x1
(integ.)

x2
(cont.)

x3
(disc.)

f(x)

Sandgren
(1990)

10 1.180701 0.283 2.7995

Chen &
Tsao
(1993)

9 1.2287 0.283 2.6709

Wu &
Chow
(1995)

9 1.227411 0.283 2.6681

INTEMOB 9 1.16 0.265 2.205

Convergence Test

Due to the relatively simple nature of the
above example problems, the global
optimization loop converged (the third
convergence) with a very few iterations. This
may however take a reasonable number of
global iterations for large-scale, real-world,
complex engineering problems. The
convergence history of such a large
engineering design optimization problem
(Rahman et al., 2001) is presented in Figure
7. The problem was to optimize hydraulic
fracture treatments for a gas reservoir while
maximizing the Net Present Value (NPV)
considering gas production over 10 years.
The calculation of NPV as the objective
function for INTEMOB, and that of 10 highly
nonlinear constraint functions was very
computation intensive. This involved a large
number of subroutines each of which
contained numerous internal iterative loops
and evaluation of complementary error
functions. These made the objective and
constraint functions nondifferentiable and

discontinuous. The optimization process was
started with three very different initial designs,
which eventually converged to the same
optimum design within 80 redesign iterations
(restart for global optimization). As per the
inherent mechanism of compound
reconfiguration, only the initial design may be
infeasible; every subsequent design is
feasible and better than its predecessors. As
can be seen in Figure 7, the algorithm has not
only found the same optimum design through
such compound reconfiguration, but it has
also overcome a number of local optima
terrains in order to reach the final optimum.
Running the algorithm on a typical personal
computer, the total real time to find a global
optimum design took about 40 seconds.

Fig. 7: Convergence to optimum design from

different initial designs.

11.0

12.0

13.0

14.0

15.0

16.0

17.0

0 20 40 60 80 100

Redesign iterations

Initial Design 1

Initial Design 2

Initial Design 3

Conclusions

The role of optimization in engineering design
is logically established and wide-range
capabilities of optimization tools are identified
to deal with real-world engineering problems
of various natures. Basic principles,
capabilities and limitations of various
optimization methods in different classes
have been briefly reviewed.

For many real-world engineering design
problems, benefits of direct search methods
are highlighted. The proposed moving object
algorithm, INTEMOB is developed and coded
by adding a number of features to a classical
evolutionary algorithm to enhance its
capability to handle engineering design
problems of varying natures. Special features
of the algorithm, such as, mitigation of

ASOR Bulletin, Volume 23 Number 2, June 2004 13

numerical instability, sequential restarting to
establish the global optimum and dealing with
equality constraints, integer variables,
discrete variables and multiple conflicting
objectives are presented in details.

The algorithm was verified with a wide range
of algebraic problems and real-world
engineering design problems. Within the
scope of this paper, solutions of two algebraic
problems and two relatively simple
engineering design problems have been
compared with known solutions, and the
capability of the algorithm to find the actual
optimum solution has been proved.
References are made to large-scale
optimization works performed by INTEMOB.

Acknowledgements

The author acknowledges the FORTRAN77
source code of the Nelder-Mead simplex
contributed by Dr. S.N. Ghani, upon which the
current enhanced version is built. The author
also welcomes interests from readers to test
the current code in their research works, or to
develop collaborative research projects in
which the code will be used and improved.
Finally, the author thanks two anonymous
reviewers for their constructive comments that
have raised the standard of this paper.

References

[1] Balachandran, M. and Gero, J.S., (1984),

A comparison of three methods for
generating the Pareto optimal set, Eng.
Optim., 7(4), 319-336.

[2] Berke, L. and Venkayya, V.B., (1974),
Review of optimality criteria approaches
to structural optimization, ASME, AMD, 7,
23-24.

[3] Chen, J.L. and Tsao, Y.C., (1993),
Optimal design of machine elements
using genetic algorithms, J. of the
Chinese Soc. of Mech. Engrs., 14(2),
193-199.

[4] Coello, C.A.C. and Christiansen, A.D.,
(1999), Moses: a multiobjective
optimization tool for engineering design,
Eng. Optim., 31, 337-368.

[5] Cottle, R.W. and Dantzig, G.B., (1968),
Complementary pivot theory of
mathematical programming, in: G.B.
Dantzig and A.F. Veinott, eds., Lectures
in Applied Mathematics II, Mathematics
of the Decision Sciences, Part I
(American Mathematical Society,
Providence, RI), 115-136.

[6] Das, I. and Dennis, J.E. JR., (1998),
Normal-boundary intersection: a new
method for generating the pareto surface
in nonlinear multicriteria optimization
problems. SIAM J. Optim., 8, 631-657.

[7] Das, N.C., Mazumder, S.K. and Kajal,
D.E., (1999), Constrained non-linear
programming: a minimum cross-entropy
algorithm, Eng. Optim., 31, 479-487.

[8] Fu, J., Fenton, R.G. and Cleghorn, W.,
(1991), A mixed integer-discrete-
continuous programming method and its
application to engineering design
optimization, Eng. Optim., 17, 263-280.

[9] Ghani, S.N., (1972), An improved
complex method of function minimization,
Computer-Aided Design, 71-78.

[10] Ghani, S.N., (1989), A versatile procedure
for optimization of a nonlinear
nondifferentiable constrained objective
function, AERE R13714, United Kingdom
Atomic Energy Authority, Nuclear
Physics and Instrumentation Division,
Harwell Laboratory, Oxfordshire, UK,
December.

[11] Goldfarb, D., (1972), Extension of
Newton’s method and simplex methods
for solving quadratic programs, in: F.A.
Lootsma, ed., Numerical Methods for
Nonlinear Optimization, Academic Press,
London, 239-254.

[12] Goldfarb, D. and Idnani, A., (1983), A
numerically stable dual method for
solving strictly convex quadratic
programs, Math. Program., 27, 1-33.

[13] Goldstein, A.A. and Price, J.F., (1971),
On descent from local minima,
Mathematics of Computation, 25 (115),
569-574.

[14] Goncalves, A.S., (1972),A primal-dual
method for quadratic programming with
bounded variables, in: F.A. Lootsma, ed.,
Numerical Methods for Nonlinear

14 ASOR Bulletin, Volume 23 Number 2, June 2004

Optimization, Academic Press, London,
255-263.

[15] Grigoriadis, M.D. and Ritter, K., (1969), A
parametric method for semidefinite
quadratic programs, SIAM J. Control, 7,
559-577.

[16] Gurwitz, C. and Overton, M., (1989),
Sequential quadratic programming
methods based on approximating a
projected Hessian matrix, SIAM J. Sci.
Comput., 10, 631-653.

[17] Lagarias, J.C., Reeds, J.A., Wright, M.H.
and Wright, P.E., (1998), SIAM J. Optim.,
9(1), 112-147.

[18] Klingman, W.R. and Himmelblau, D.M.,
(1964), Nonlinear programming with the
aid of a multi-gradient summation
technique, J. of the Assoc. for Comp.
Machinery, 11(4), 400-415.

[19] McKinnon, K.I.M., (1998), Convergence of
the Nelder-Mead simplex method to a
nonstationary point, SIAM J. Optim., 9(1),
148-158.

[20] Mistree, F., Hughes, O.F. and Phouc,
H.B., (1981), An optimization method for
the design of large, highly constrained
complex systems, Eng. Optim., 5, 179-
197.

[21] Murray, W. and Prieto, J.P., (1995), A
sequential quadratic programming
algorithm using an incomplete solution of
the subproblem, SIAM J. Optim., 5, 590-
640.

[22] Ndiritu, J.G. and Daniell, T.M., (1999), An
improved genetic algorithm for
continuous and mixed discrete-
continuous optimization, Eng. Optim., 31,
589-614.

[23] Nelder, J.A. and Mead, R., (1965), A
simplex method for function minimization,
Computer Journal, 7(4), 308-313.

[24] Peterson, E.L., (1976), Geometric
Programming, SIAM Review, 18 (1), 1-
51.

[25] Pierre, D.A. and Lowe, M.J., (1975),
Mathematical Programming via
Augmented Lagrangian: An Introduction
with Computer Programs, Addison-
Wesley Publishing Co., Inc., Reading,
Massachusetts.

[26] Rahman, M.K. and Caldwell, J.B., (1992),
Rule-based optimization of midship
structures, Marine Structure, 5, 467-490.

[27] Rahman, M.K., (1996), Optimization of
panel forms for improvement in ship
structures, Structural Optimization, 11,
195-212.

[28] Rahman, M.M., Rahman, M.K. and
Rahman, S.S., (2001), An integrated
model for multiobjective design
optimization of hydraulic fracturing,
Journal of Petroleum Science and
Engineering, 31, 41-62.

[29] Rao, S.S., (1984), Optimization: Theory
and Applications, second ed., Halsted
Press, New York.

[30] Sandgren, E., (1990), Nonlinear integer
and discrete programming in mechanical
design optimization, Trans. of the ASME,
J. of Mech. Design, 112 (2), 223-229.

[31] Spellucci, P., (1998), An SQP method for
general nonlinear programs using only
equality constrained subprograms, Math.
Program., 82, 413-448.

[32] Theil, H. and Van De Panne, C., (1960),
Quadratic programming as an extension
of conventional quadratic maximization,
Management Science, 7, 1-20.

[33] Valencia, K.L., Chen, Z, Rahman, M.K.
and Rahman, S.S., (2003), An integrated
model for the design and evaluation of
multiwell hydraulic fracture treatments for
gas-condensate reservoirs, paper SPE
84860, International Improved Oil
Recovery Conference in Asia Pacific,
Kuala Lumpur, Malaysia, Oct.20-21.

[34] Wu, S. and Chow, P, (1995), Genetic
algorithms for nonlinear mixed discrete-
integer optimization problems via meta-
genetic parameter optimization, Eng.
Optim., 24, 137-159.

ASOR Bulletin, Volume 23 Number 2, June 2004 15

	A Direct-Search Optimization Algorithm for Complex Design Pr
	Introduction
	Compound Centroid in Infeasible Space
	An Algebraic Problem with an Exponentially Nonlinear Constra
	An Algebraic Unconstrained Problem
	Pressure Vessel Design with mixed Continuous and Discrete Va
	Spring Coil Design with mixed Continuous, Discrete and Integ

