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Abstract
A Two Stage Interval Time Minimizing
Transportation  Problem, where total

availability of a homogeneous product at
various sources is known to lie in a
specified interval, is studied in the present
paper. In the first stage, the sources ship all
of their on-hand material to the demand
points, while a second-stage delivery
covers the demand that is not fulfilled in the
first shipment. In each stage, the objective
is to minimize the shipment time, and the
overall goal is to find a solution that
minimizes the sum of the first- and second-
stage shipment times. A polynomial time
algorithm is proposed to solve the problem
to optimality, where at various steps of the
algorithm lexicographic optimal solutions of
restricted versions of a related standard
time minimizing transportation problem are
examined and finally the global optimal
solution is determined.

Keywords: Combinatorial Optimization,
Non-Convex Optimization, Time Minimizing
Transportation Problem, Global
Optimization.

Introduction

Wide ranging literature is available to study
the cost minimizing transportation problem
(CMTP). If I ={1,2,...,m} is the index set of

m sources, J = {1,2,...,n} of n destinations,
clj,(i,j) € I xJ the per unit shipment cost
from the source i to the destination j,
a,;, i € I the availability of a homogeneous
product at the source i and b;, j € J the

demand of the same at the destination j,
then the standard CMTP is modeled as:

subject to

Zx,.j =a,iel

jeJ
dx,=b,,jel .. (1.0)
iel
x,; 20,V j))elx]
where,  x;,(i,j)€lxJ denotes the

quantity shipped from the source i to the
destination j. The best-known strongly
polynomial time algorithm for CMTP is of
order  O(mlogn(m+nlogn))  (Orlin,
1988).

The time minimizing transportation problem
(TMTP) is another important class of
transportation problems in terms of its

widespread  applications.  If  7,(x;),

(i,j) e IxJ, the shipment time from the
source i to the destination j, is defined

as:
t,(x,)=t,(=0), if x, > 0}
t,;(x,;)=0, if x;=0

and shipment from sources to destinations

is done in parallel, then the mathematical

model for the standard TMTP is:
min[7'(X) = n}gx(tij (x;)]

where X =(x;) satisfies (1.0). It may be

noted that shipment time from the i"

source to the j”’ destination does not
depend upon the volume of the shipment.
Clearly, f,(x;) is a concave function.

T(X) is the shipment time for a feasible

schedule X and is known to be a concave
function (Bansal and Puri, 1980). Hence,
standard TMTP is a concave minimization
problem (CMP).

In literature conventional TMTP has been
studied by various authors (Ahuja, 1986),
(Bhatia, Kanti Swarup and Puri, 1976),
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(Garfinkel and Rao, 1971), (Hammer, 1969)
and TMTPs with mixed constraints and flow
constraints have been studied by Khanna et
al. (Khanna, Bakshi and Puri, 1981),
(Khanna and Puri, 1983). An optimal
solution of TMTP can be obtained by finding
its lexicographic optimal solution (LOS)
(Satya Prakash, 1982). A lexicographic
optimal solution of TMTP is one in which
not only the shipment on the longest
duration routes is minimized but shipments
on all other routes of various durations are
also minimized where routes mean various
source-destination links. For obtaining an
LOS, the set of transportation times on
various routes is partitioned into a number

of disjoint sets, B,k =1.2,...,s, where,
B, ={(i,j)eIxJ:t; =T*}andT’"' > T’
Vj=12,...,s—1. Positive weights, say
A k=12,...,s, are attached to these
>> A,V j=12,..,s-1.
CMTP:

sets where, 4,

This yields a standard

minz/lk[ inj] where, X =(x;)
k=1 (i.))eB, ‘
belongs to the transportation polytope over
which the original TMTP is being studied.
An optimal feasible solution of this CMTP
yields a LOS of TMTP. Thus, a TMTP is
also solvable in polynomial time. The

positive weights 4, j=12,...,s can be

determined as described by Sherali
(Sherali, 1982) and Mazzola (Mazzola,
1993).

There are many more problems where it
becomes necessary to study a TMTP
wherein the products are shipped to the
destinations in two stages. Consider for
example, the production of maintenance-
free-sealed industrial batteries. Production
is a continuous process depending on the
available resources. However each battery
has a certain shelf life and batteries need to
be periodically re-charged, else the whole
lot becomes dead resulting in the loss of the
finished goods. Often due to lack of re-
charging facilities on the production floor,
each batch of manufactured batteries is
transported immediately to the demand
points; this corresponds to the first stage. In
the second stage enough maintenance-
free-sealed batteries from the sources are
shipped in order to satisfy the industrial
users' demands at the destinations.
Shipment is done in such a way as to

minimize the overall transportation time.
Such situations motivated the study of a
two-stage interval time minimizing
transportation problem where the total
availability of the product at the sources lies
in specified intervals. In both the stages,
transportation of the product from the
sources to the destinations is done in
parallel.

The current problem may be viewed as a
parametric optimization problem (Gal,
1979) in which availability at the source

i(i € I) varies in the interval[a,,a';]. But

as the present problem consists of two
stages, second stage being dependent
upon first stage, the parametric approach
will not be of much advantage.

The current problem, in spite of interval
sources' constraints, is very much different
from interval linear programming because
of the sum of two dependent concave
functions in the objective function.
Therefore, solution strategies available for
solving interval linear programming problem
(Charnes and Granot, 1976), (Robers and
Israel, 1970) will not only be
computationally expensive but of no use as
well. Similarly  inexact  optimization
techniques (Amaya and Ghellinck, 1997),
(Soyster, 1973) will not be of much use.

The Two Stage Interval TMTP is shown to
be related to an ordinary interval TMTP,
which is further shown to be equivalent to a
standard TMTP. Feasible solutions of the
Stage-l and Stage-Il problems are derived
from a feasible solution of this standard
TMTP. Due to the dependence of Stage-I
on Stage-l, special types of solutions viz.
lexicographic optimal solutions (LOS) are
investigated. First, Stage-Il shipment time is
being controlled by solving the various
restricted versions of this standard TMTP in
which some routes pertaining to Stage-ll
are abandoned. In the Stage-l and Stage-Il
shipment time pairs thus obtained
successively, Stage-Il shipment time strictly
decreases and Stage-l shipment time
strictly increases. Similarly on the other
hand, Stage-I shipment time is controlled by
solving other restricted versions of the
same standard TMTP in which some routes
pertaining to Stage-l are abandoned. In the
pairs, thus generated, Stage-l shipment
time keeps on decreasing and Stage-ll
shipment time keeps on increasing. In all
the pairs of Stage-l and Stage-Il shipment




times, the shipment time of one stage is the
minimum corresponding to the other.

As during the algorithm a finite number
(£4(s—7r)—2) of CMTPs are to be

solved, it follows that the proposed
algorithm is also a polynomial time
algorithm, where s is the number of
partitions of transportation times on various
routes and 7 is the position in the ordering
of shipment times on various routes
(arranged in the descending order) of the
overall minimum shipment time for the
standard TMTP related to Two Stage
Interval TMTP. This minimum shipment
time is yielded by an LOS of this standard
TMTP.

Theoretical development of the problem is
presented in the next section followed by
the development of the algorithm.
Concluding remarks are given towards the
end after a numerical illustration.

Theoretical Development

Mathematical Formulation of Two Stage
Interval TMTP.

Let a, and a',,iel denote respectively

the minimum and maximum availability of a
homogeneous product at the source i and

bj,j € J the demand of the same at the
destination j , where Zai <2bj <Zd:‘ .

1 J 1
In the first stage of the Two Stage Interval
TMTP the quantity a,(<a',) is shipped

from each source i,i€/ and after its

completion, enough quantity of the product
is dispatched in the second stage so as to

exactly satisfy the demand bj at the
destination j, j € J .
The Stage-I problem is thus formulated as:
min max(1, (, ))] = min[7; ()]
where, the set S' is given by
Z Yy =a,i€l

jeJ
S Zyij <b,,jed
iel
Yy 20V, j)elxJ
Corresponding to a feasible solution
Y =(y;) of the Stage-l problem, let

S'(Y) be the set of feasible solutions of the
Stage-Il problem which is stated as:
i sl )= min )
where,
ZZl.j <d'-a,iel
jeJ
S'(¥):yD.z;=b,—b',,jeJ
iel

z, 20,V(i,j)elxJ

and b'j=Zyy.,jeJ.

iel

Thus, the Two Stage Interval Time
Minimizing Transportation Problem can be
stated as

min T+ (min 2.2))| @

As shipment times in Stage-l and Stage-ll
are concave functions, the Two Stage
Interval TMTP aims at minimizing a
concave function over a polytope. Hence
(P) is also a concave minimization
problem. As global minimizer of a CMP over
a polytope is attainable at an extreme point
of the polytope, it is desirable to investigate
only its extreme points.

Closely related to the problem (P) is the
interval time minimizing transportation
problem (P,) defined as

min[7'(X)]= rpeig[rr;gX(t,-,- (x; ))] (F,)

Xe§

where,
..
a, Sin/. <ad,iel
jeJ
S injzbj,jeJ

iel
x; 20,V(@i,j))elxJ
Clearly a feasible solution of the problem
(P) provides a feasible solution to the

problem (P,)and conversely.

The standard time minimizing transportation
problem (P;) associated with (P,)is

defined as

I}{ligl[f(X)]z min max(t:./. (xi].))

X=(x;)eS" IxJ

(P)

where,




%N
M
QX

,]eJ

x,; 20,V (/) elxJ

where,
I= {1,2,...m,m+1,....2m}
J=JU{n+1}

a,=a;,i=12,...m

Q>

— ' ; —
=a',—a;,i=12,...m

I;,—b.,jeJ
b,=>d,~>b,
iel jed
m,jed
by =t i=L12,..m,jeJ
fo=M,i=12,..m,M >>0
£ =0,i=12,...m

m+i,n+l1

An LOS of the problem (P,) will provide

the overall minimum shipment time

for(P;).

Letmin [T(X)]|=T"=T"""(p, =0).
Xe$

of the

A feasible solution X =(x;)

problem (P,) is said to be an M-feasible

solution (MFS)if x, =0V (i, j):¢, =M .

It may be noted that if X =(x is an M-

U)I J
feasible solution of problem (P;), thenY =
(¥, and Z=(z;),,, are respectively

feasible solutions of Stage-l and Stage-ll
problems where, y, =x,V(i,j)elxJ

and z, =x,,,  V(i.j)elxJ. Further if
Zrerg(l})[Tz (2)]=T,(Z), then a feasible

solution of the problem (P) consists of the
feasible solution Y for Stage-l and the
feasible solution Z for Stage-Il.

The Next two theorems establish the
equivalence between the problem (P,)

and the problem (P;) over the set of its M-
feasible solutions.

Theorem 1 An M-feasible solution of the
problem (P,) corresponds to a feasible

solution of the problem (P,)and vice
versa.

Proof Let Y =(y;) be an M-feasible
solution of the problem(FP;). For each
i€l, defnex,=y,+y,,;VjeJ. It
can be easily established that X = (x;) is

a feasible solution of the problem (P,) .

Conversely, let X =(x;),(i,j)elxJ be
a feasible solution of the problem (P,) .
a,,iel .Clearlya, <a,<a',.

Lethi/. =a

jeJ
Therefore,
inj =a,,iel
jeJ
Zx,.j =b;,jeJ

iel

x,; 20,V(Q,))elxJ

Clearly, Zﬁi = ij

iel jeJ
Consider the following imbalanced TMTP:

min7(Z) = min[n[lgx(tﬁ (zﬁ)]

subject to

Zzii

jeJ

D> z;<b, jel

iel
z; 20,V (i, j)elxJ
Let Z=(z,) be an optimal feasible

=a,,iel

solution of this
Zzlj = ,]eJ Now, set

iel
=z;,(,j)elxJ
=0,Viel

problem and let

(1.1)
yi,n+1

Next, consider the balanced TMTP defined
as follows:

min7(W) = min[n}a/x(tii (w; )]




subject to,
ZWU =a,—a,iel

jeJ

2wy =b,=b,jeJ

iel
w; 20,V (i, j)elxJ
If W= (wl.j) is an optimal solution of the
above problem, then set

Yriy = Wy (5 J) € IS (1.2)
ym+i,n+1 = a'i_c_li’i € [ '
It can be easily seen that

Y=(y;),0,)) elxJ as defined by (1.1)
and (1.2) above, is an M-feasible solution of
the problem (7).

Hence the result. (]

Theorem 2 The value of the objective
function of the problem (P;) at an M-

feasible solution is same as the value of
objective function of the problem (P,)at
the corresponding feasible solution.

Proof Let Y =(y,) be an M-easible
solution of the problem (Pﬂ) with the value
of its objective function as T, 5. Let
X =(x;) be the corresponding feasible

solution of the problem (P,) giving T, as
the value of its objective function. Then,
Ty Znilf}x(tij )

l’glxajx(t i (y i ))’

m[ax(ti,nﬂ (yi,n+1 ))’

Solution Strategy for the Two Stage Interval
TMTP

The solution strategy for the Two Stage
Interval TMTP depends upon the following
types of standard TMTPs and CMTPs.

The possibility of Stage-ll shipment time
less than the on hand shipment time, say

T, is examined by studying the time
minimizing transportation problem

P, (T'™") derived from the problem (Py)
by abandoning the routes (m+1i,j) for
which ¢, >T" (i,))elxJ e,
m+i,j = M(>> O)a (lﬂ ]) € I x J for

which ¢, > T If LOS of P,,(T"") is

an MFS, then the new Stage-l shipment
time is more than the on hand Stage-l|
shipment time and the corresponding
Stage-Il shipment time is less than the on
hand Stage-Il shipment time.

setting ¢

Suppose LOS of PLﬂ(TH) is M-feasible
and let Stage-l and Stage-Il shipment times

corresponding to this LOS be T* and T
respectively. To find the least possible
Stage-Il shipment time corresponding to the

Stage-l shipment time T*, the following
cost minimizing transportation problem (call

it CPL/,(Tk,TI) ) is solved.
min ) c,x, ..CP,,(T",T")

S T
where,

c; =M, (i,j)elxJ,wheret, >T,
=0, (i,j)elxJ,wheret, <T,

= max - )) Coiy =M, (i, j) € IxJ, wheret, >T'
maxlt, .. (V.. )}
ey et i =4, (i,j)elxJ,wheret,, =T
max\t .. .
Vi ( m+i,n+l (ym+1,n+l)) = ZHI 5 (l, ]) elx J, Where fm+i,j — Tl+1
=max{ maxlz, (y,))maxiz, .. . (v, o .
{ o (lj(ytj)) 1) (m JJ (y ,1))} = ﬂ“s’ (l,]) c IXJ,Wheretmﬂ.,j =T

:max{tij (x; )} since x; =y, +,,,; and
I As an M-feasible LOS of the problem

tuiiy =ty (b)) €I P (T"") is a feasible solution of
=1, CPLﬁ(Tk,T’) and as Zbi>2ai, it
u jed iel

follows that optimal value in CP, , (T*, 1"
will be non-zero. Corresponding to Stage-I




shipment time T* the optimal feasible
solution of C’PLﬂ(Tk,TI) provides the
least Stage-ll shipment time which is less
than or equal to T'. Thus, OBFS of
CP,, (T*,T') provides a feasible solution

of the problem (P).
It may be observed that problems
P, (T"™") and CP,,(T",T") for various

values of [ help in generating the pairs of

the type ((77(.),7,(.)):T;(.) > T, (.)) for the
Stage-| and Stage-Il shipment times.

Similarly to generate the pairs of the type
(T;(),T,()):T;() < T,(.)), TMTPs of the

type PUﬁ(Tj) and CMTPs of the type
CPUﬂ(Tk,T/) are
PUﬁ(T'/) is the TMTP derived from the

studied, where

problem P, by abandoning the routes
(i,jyelIxJ  for which ¢ >T",
(i,j)elIxJ and CPUﬂ(Tk,T]) is

defined as:
min} ¢, CP,(T",T")
S IxJ
where,
Cm+i,j = M’ (l,]) € IXJ,WhCI‘e £m+[,j > Tl
=0, (i,j)elxJ,wheret,,, < T'

c; =M, (i,))elxJ,where ¢t > Tk
= A, (i,)) € IxJ,where ¢, =Tt

= A (i, J) € I xJ, where £, = Tkt

=1,

s

(i,j) e IxJ,where ¢, =T"

Procedure for Two Stage Interval TMTP

A LOS, say X, of the problem Pﬁ is
obtained. Let 7(X) = max (fil.(xij))z T".
IxJ k

This T" corresponds to either Stage-l
shipment time or Stage-ll shipment time.
Without loss of generality let it correspond
to Stage-l shipment time. Let Stage-ll
shipment time corresponding to this LOS be

T"% <T" where g’ is non-negative
integer. To find the minimum Stage-ll

shipment time corresponding to the Stage-I
shipment time T'", solve the cost minimizing

transportation problem CPLﬂ (T, T ),

where p, =0. Its OBFS will yield the
minimum Stage-ll shipment
T corresponding to time 7' of
Stage-l shipment, where ¢,(>¢q;) is a
non-negative integer. The first recorded pair
thus obtained is (7" 7, T"") yielding
TP +T" % of

time, say

value the objective
function of the Two Stage Interval
TMTP(P). Suppose the pairs thus

recorded so far for Stage-l and Stage-ll
shipment times be

(@ ooy s 7o)

j=0,1,...,k. For further generation of
such pairs solve the restricted version
P, ,(T"™") of the problem (P,) wherein

the routes (m+i,)),(i,j)elxJ for

which ¢, > T""% are abandoned. If optimal

feasible solution of P, ,(T""*) is an MFS,
then the corresponding Stage-l shipment
time, say 7' 7', will be more than T ¢

0
r+qpq

and Stage-ll shipment time, say T ,
will be smaller than T'"%. To find the
minimum Stage-ll shipment time
corresponding to the Stage-l shipment time
=P+l F=Pk+1 r 9+|
T, solve CP,(T"",T T lts
OBFS will yield the pair
(T 7, T %), q,.,>q,, for Stage-l
and Stage-Il shipment times. It is claimed
that in these recorded pairs Stage-l

shipment time is also the minimum
corresponding to Stage-Il shipment time. If,

however, LOS of P, ,(T""*) is not an M-

feasible solution, then it follows that Stage-Il
shipment time cannot be further reduced

below 7' and the current best value of
the objective function of the Two Stage

Interval TMTP (P) is
min [T +T7]. 1t wil be
j=0,1,....k

0
established that if the LOS, say X %', of
the problem P, (T""*) is not an M-
feasible solution, then




which in turn would mean that there can not

exist any other pair ((7,(), ()T ()= T(.)
yielding value of the sum of Stage-l and
Stage-Il  shipment times less than

gnin k[Tr_pf +T""]. It may be observed
G201,

that for these recorded pairs
T"7 >T"7h and T <77 .
j=12,... k.

Next, if possible, the pairs

(T, (),T,()):T;() < T,(.)) in which Stage-I
shipment time is less than the Stage-ll
shipment time are generated.

First, the restricted version, call it
B, (T"™™), of the problem (P,) is
constructed by abandoning the routes
(i,j)eIxJ for which # >T"" e,

setting #, =M, (i,j)eIxJ for which

t; 2T 1f LOS of B ,(T"™") is not an

M-feasible solution, then it is claimed that
there does not exist a pair

((T,(),T,()):T,() < T,(.)) such that the

corresponding value of the objective
function of the Two Stage Interval TMTP

,,,,,

On the other hand, if LOS, say)?”q‘?, of
the problem P, (T""") is an M-feasible
solution, then the corresponding Stage-I
shipment time, sayT”a‘?, would be less

than7 "™ . Let Stage-ll shipment time at
this M-feasible LOS of the problem

Py(T™)  be T" 7. To obtain the
minimum Stage-I shipment time

corresponding to the time 7" 7 of Stage-I
shipment, the cost minimizing transportation

problem CPUﬂ(T”q‘(’J,T"*‘N’O) is solved. Its
OBFS yields the minimum Stage-| shipment
time, say 7" , corresponding to the
Stage-ll shipment time 7”7 . Suppose the
pairs (777, 777y 7T <77,

j=0,1,...,k have been generated so far.
Existence of next such pair is examined by

solving the restricted version PUﬂ(Tr+‘7")
derived from Py by setting
t,=M(>>0),(,j)elxJ for which

2T If LOS, say X', of

By, (T"*% is an M-feasible solution, then
note Tl()?"+‘7’?*‘ )=T""%" and

Tz()?”a‘q*' y=T""7 _To find the minimum
Stage-l shipment time corresponding to the

Stage-Il shipment time Tr_ﬁ’”‘, the cost
minimizing transportation problem

CP, (T ,T"7) is solved. Its OBFS
yields the minimum Stage-l shipment time
(call it Tk ) corresponding to the Stage-
Il shipment time, T" P+ Thus, OBFS of

CPU/B (Tr-*-ﬁfu ,Tr—@n ) provides the pair
(T’”N’“1 T Pen ). On the other hand, if the

LOS X% of P, (T"*™) is not an MFS,
then Stage-l shipment time can not be

reduced below T and it is established
that

7;()?”52“ ) + Tz ()?"+5£+1 ) > min [TH% +T" —Dj ]
J=0,L,.. .k

which in turn means that no more pairs
(TOLO:T()<T,())  can  be
obtained yielding value of the sum of Stage-
| and Stage-ll shipment times less than

rglin k[T”‘?" + TP ]. Itis claimed that in
j=0,L,...,

the pairs ((TH% ,THNJ’ ):T”qf <T" P ),
j=0,1,...,k thus generated, Stage-Il
shipment time is also the minimum
corresponding to Stage-l shipment time.
Hence these pairs also correspond to

feasible solutions of the Two Stage Interval
Time Minimizing Transportation Problem.

Thus, the global minimum value of the
objective function of the Two Stage Interval
TMTP is

min{ min(T SRS A ),min(T TP )}

>0 j>0

To give the above stated procedure a
sound mathematical foundation, the various
claims are established in the following
theorems.




Theorem 3 In a pair (T'7,T"")
corresponding to the OBFS of the problem
CP (T ,T”"?), TP is the minimum
Stage-l shipment time corresponding to
time 7% of Stage-ll shipment, where

T"” and T are the Stage-l and
Stage-lIl  shipment times respectively
corresponding to the M-feasible LOS of

PLﬁ (Tr+‘Ik—1 ) .

Proof To prove that the Stage-l shipment
time 77 is the minimum corresponding
to the Stage-ll shipment time7 "%,

assume the contrary. Suppose that 7" " is
not the minimum shipment time for Stage-|

corresponding to time 7% of Stage-Il
shipment.
This implies that there exists a solution,

say X, of the problem (Pg) such that
T(%)=7"7 <77 and T,(X) =17
Clearly T" < Tl()b <T"™" as T"(=T"")

is the minimum shipment time for Stage-I
yielded by the LOS of the problem (P, ) . M-

feasible LOS of P, ,(T""*"') yields the
Stage-l shipment time T 7%, which is also

the overall shipment time for this TMTP.
Also by definition of P, ,(T""*") it follows

that X is its feasible solution.

By assumption X yields Stage-l shipment
time 7" ?(<T" ") and Stage-Il shipment
tme 7% . Thus X vyields overall
shipment time for the time minimizing
transportation ~ problem P, (T )
smaller than the one yielded by its LOS,

which cannot be true. Hence T 7 is the
minimum Stage-| shipment time
corresponding to the Stage-Il shipment time

T % n

Theorem 4 In a pair (T7% T"7)
corresponding to the OBFS of the problem
CPU/;(T”%U ,T77P9), 7777 is the minimum
Stage-Il shipment time corresponding to
time T *%of Stage-l shipment, where
T7% and T P are the Stage-l and

Stage-ll shipment times corresponding to
the M-feasible LOS of P, (T 1.

Proof The proof is similar to the proof of the
theorem 3. (]

0
Theorem 5 If LOS, say X% | of the time
minimizing transportation problem
B, ,(T™") is not an MFS, then

where, each of problems P, (T"")
V j=1,2,....k — 1 has M-feasible LOS.

Proof As LOS of P,,(T""") is not an M-
feasible solution; the Stage-Il shipment time

can not be further reduced below 7" .
Currently best value of the sum of the
shipment times in Stage-l and Stage-Il

is r(l)link[T"fpf + T ] At non M-feasible
=0,1,...,

LOS of P, (T"") either (i) the Stage-l
shipment time is one of the first (k+1)

recorded tlmes Tr_pU DTr_pl ,Tr_I’Z PERRT Tr_Pk )
in which case the corresponding minimum

Stage-ll shipment time is already known or
(ii) the Stage-I shipment time is none of the

first (k +1) recorded times but it lies in the

interval [T"7°,T""7*], in which case one

of the recorded Stage-l and Stage-Il
shipment times would yield a smaller value
of the sum of the shipment times or (iii) the

Stage-| shipment time is more than 7' 7%,

. . . —p; +q .
in which case min [T' Py q’] will be
20,1,k

smaller than the sum of the Stage-l and
Stage-Il shipment times at the current non
M-feasible LOS of P, ,(T""*). Hence the

sum of the Stage-l and Stage-Il shipment
times corresponding to a non M-feasible

LOS of the problem P, ,(T""*) is not less

than the current best value of the sum. That
is,

TX )+ T(X Y2 min [T +T7%
1\ 2\&

j=0.1,...k
[




Remark If LOS of the problem P, (T

is not an MFS, then no further restricted
version of the problem(P,;), namely

Py (T") j>k can provide a solution
of the problem (P) yielding value better
than jzr(r)hiflwk(Tr*p’ + T”q/) )

Remark Let pairs in hand of Stage-l and
Stage-Il shipment times be (7" "/, T"""),
j=01..%k. Let LOS of the problem
P, ,(T""") be an MFS. Then, Stage-|
shipment time corresponding to this M-

feasible LOS is more than T ?* since for a
given Stage-l shipment time less than or

equal to T' " the Stage-ll shipment time
can not be less than 7" . (Recall that M-
feasible solution LOS of PLﬂ(T”q" ) yields

Stage-Il shipment time less than 7" )

Theorem 6 |If LOS of the problem

P (T™"), say X" is not an MFS,
then T,(X" )+ T,(X"% ) > mir{l”™ +77%}
J>

— =0

Proof As X" is not an MFS, we have

~0

¥4
Xy

6, 2T e, T,(X")>T"""

>0 for some (i, j) € I xJ for which

Also we have Tz()?”%n) >T" =T""
(since p, = 0). Therefore,

7;()?”!73) + Tz()?rﬁg )> T+ L T""Po
>min{T" " +T7"}
j>0
Hence the result. [ ]

Remark If LOS of the problem P, (T""")
is not an MFS, then the restricted versions
Py (T"") V¥ j =0 of the problem Py can
not provide an optimal solution of the
problem (P). This also implies that there

does not exist a feasible solution of the
problem (P) having Stage-l time less

than 7" .

~k+1
r+qo

Theorem 7 If LOS, say)? , of
B,(T"™™) 'is not an MFS, then

7;()?”5&1 )+T, ()?H%UH )> I(ﬂink {T“ R }
J=01..,

where, each of the problem PUﬂ (T”%)
V j=12,...k -1 has an M-feasible LOS.

Proof The proof is similar to the proof of the
theorem 5. ]

Remark If LOS of the problem P, (T7%)
is not an MFS, then no further restricted
. r+”} .
version of (P,), namely F,(T N, j=k

can provide a solution of the problem (P)

yielding value better than
min (779 1777,
j=01,....k

Remark If LOS of the problem £, (THE’)

is an MFS for all j=12,...,k, then as
T (X MUY < T it follows  that
T, (X%) > TP since if Tz()?”‘ﬁ*‘)
<T" P then corresponding  minimum
Stage-| time will be greater than or equal to
Tr+ak .

The next theorem proves that the proposed

solution methodology indeed obtains the
global optimal solution of the Two Stage

Interval TMTP (P).

Theorem 8 If the generated pairs of Stage-I
and Stage-ll shipment times are

(T, 77 k>0 and (777,777 )
k>0 then, the optimal value of the
objective function of the problem (P) is

min{ min(T TPk T ),min(T”a* LT )}

k>0 k=0

Proof If the theorem is not to be true, then
there must exist a feasible solution, say

X, of the problem (P) such that the
corresponding  Stage-l and  Stage-ll
shipment times (call them 7,(X,) and

T, (X ) respectively) are such that




min(T TP T ),
k>0
min(T ey TP )
k>0

T,(X5)+T,(X;) <min

As X is a feasible solution of the problem
(P), I,(X)

minimum Stage-Il shipment time
corresponding to the Stage-l shipment time

T, (X ;). Therefore, X, is an M-feasible
solution of the problem (Py).

it follows that is the

The above inequality implies that
T(X)+T,(X,)<T 7 +T"%.
Without loss of generality, assume that
T(X)2T,(X,). As T"7(=T") is
the optimal transportation time for the time
minimizing transportation problem (P,), it
follows that 7;(X;)=T"" and hence
T,(X,)<T".
an index, say d (a positive integer not less
than 1), such that

T <T,(X,)<T™ <™

This implies that X, is an M-feasible

Therefore, there exists

solution of the problem PLﬁ (T4
M-feasible LOS of PL/;’(THCI‘H) yields

Stage-l shipment time 7" 7. By

hypothesis,

T(X)+T,(X,)<T ™7 +T"
AsT,(X;)>T"", wehaveT, (X, )<T ™.
This implies that X is a solution better
than the M-feasible LOS of P, ,(T""""),
which is not true.

Hence there does not exist any feasible

solution of (P) vyielding sum of Stage-I and
Stage-Il shipment times less than

min{ min(T TP T lmin(T "4y TP )}
k20 k=0
| |

The formal algorithm for the Two Stage
Interval TMTP is given below.

Algorithm

Step 1 Obtain an LOS of the problem ().
Note the corresponding Stage-l time as

T" =T"" and Stage-Il time as T
Solve cost minimizing transportation
problem CP, ,(T"" ,T”"g)to find the
minimum Stage-ll shipment time, say
ach , of Stage-Il corresponding to the time
TP of Stage-l shipment. Record this pair
as (T"",T").

If 777 =T" or T""% =T then stop and
go to step 3. Else, go to step 2.
Step 2 (k=>=1) Construct the problem

P,y (T"" %) and find its LOS. If it is not an
MFS, then go to step 3. Else, solve the cost

minimizing transportation problem
CPLﬁ(Tr"’",T”qE) to find the minimum
Stage-lI shipment time T

corresponding to the time T 7* of Stage-|
shipment.

Record the pair (T 7 ,T"™").

If 777 =T" or T""% =T* then stop and
go to step 3. Else, execute step 2 for next
higher value of k.

Step 3 Construct the problem
P, (T"™) and obtain its LOS. If it is not

an M-feasible solution, then go to step 5.
Else, note the Stage-l shipment time as

7% and Stage-ll time as 7”7 . To find
the minimum Stage-I shipment time, 7" |

corresponding to time TP of Stage-Il
shipment, solve the cost minimizing

~0 o
transportation problem CR,, (7" ,T"").
Record the pair (7%, 7"

If T"% =T or T" P =T", then stop and
go to step 5. Else, go to step 4.

Step _4(k>1) Construct the problem
P, (T"%) and find its LOS. If it is not an
M-feasible solution, then go to step 5. Else,

r+§£

note the Stage-l shipment time as T
and Stage-ll shipment time as 7" 7% .




Solve cost minimizing

problem CPUﬂ(T”qu,T"_ﬁ‘) to find the

transportation

r+q;

minimum Stage-l shipment time T
corresponding to Stage-ll shipment time,
TP Record the pair (7" % T 7).

if 7" =T" or T"% =T*, then stop
and go to step 5. Else, repeat this step for
next higher value of k .

Step 5 Find

k>0
This will be the optimal value of the
objective function of the problem (P) .

min{ min7" 7 + T % ),rlgl(;{T " TP )} .

Numerical lllustration

Consider the 3x6 Two Stage Interval
TMTP given below in Table 1.

l)1 D2 D3 D4 l)5 D6 a a'i
26
Sl =¢ 23 59 38 19 20| 6 8
11
Sz 40 48 20 19 23 59 [15] 29
S3 26 38 48 20 19 40 (12] 18
b 6 9 3 14 10 5

~:

Table 1

where S.is the i source, i=1223 and

. .th L .
D, isthe j= destination, j=12,...,6.

The partition of transportation times on
various routes is:

T'(=59)>T*(=48) >T°(=40)>T*(=38) >
T°(=26)>T%(=23)>T"(=20)>T*(=19)
T =T% =19 and therefore, s = 8.

The corresponding (P,;) problem is given
below in Table 2.

D, D, D, D, D; D |D, |a
S |26 23 59 38 19 20| M |6
S, |40 48 20 19 23 59| M [15
53 26 38 48 20 19 40 | M |12
S,|26 23 59 38 19 20| 0 |2
S; |40 48 20 19 23 59| 0 |14
S, |26 38 48 20 19 40| 0 |6
bl6 9 3 14 10 5| 8

Table 2

LOS of the problem (P;) yields the Stage-|

shipment time as 26 and Stage-Il shipment
time as 38.

Therefore, T" =T* =38 and hence r =4.
To obtain the minimum Stage-l shipment
time corresponding to Stage-ll shipment
time 38, solve the cost minimizing

transportation problem CF,(26,38). Its
optimal solution vyields the same pair
(26,38). Hence the first recorded pair of

the Stage-l and Stage-ll shipment times
is (26,38).

To obtain a new pair, the time minimizing
transportation problem F;(26) is solved.
Its LOS is M-feasible and yields the pair
(23,40) of the Stage-l and Stage-Il shipment

times. The optimal solution of the cost
minimizing transportation problem

CF,;(23,40) gives back the pair (23,40).
Hence the second recorded pair of the

Stage-l and Stage-ll shipment times is
(23,40).

Next the time minimizing transportation
problem F,;(23)is solved. Its LOS is not

an M-feasible solution. Hence the time
minimizing transportation problem £, ,(26)
is constructed whose LOS is M-feasible and

yields the pair (38,23). Then, we solve the
cost minimizing transportation problem

CP,;(38,23) to obtain the minimum

Stage-Il shipment time corresponding to
shipment time 38 of Stage-l. Optimal

solution of CP, ;(38,23) yields the Stage-lI
time as 20.




Hence the third recorded pair of the
Stage-l and Stage-ll shipment times is
(38,20).

Next, LOS of P, ;(20) yields the pair

(40,19). The cost minimizing transportation
problem CP,;(40,19) gives back the pair

(40,19). Since Stage-ll time has reached

T° =19 we stop here.
The fourth recorded pair of the Stage-l
and Stage-Il shipment times is (40,19).

Now, min{26+38, 23+40, 38+20,
40+19}=58. Hence for the optimal solution
of the problem (P) the Stage-l shipment
time is 38 and Stage-Il shipment time is 20
yielding the sum of Stage-l and Stage-Il
shipments as 58. Stage-l and Stage-ll
shipment schedules for this optimal solution
are given in Table 3.

D1 Dz D3 D4 Ds D6 D7 a

® &) |,

S
"126 23|59 |38 19| 20| Mm
B
O T 0o
15
*lao| 48| 20|19 |23 |59 | ™
6 (6
. (0 (® -,
26 | 38|48 |20 | 19 | 40 | M
2
S, 2
26 | 23 |59 |38 |19 ]20] 0
8
S @ @ Q 14
40 |48 | 20 | 19| 23 |59 | 0
S, O, 6
26 | 38 |48 |20 |19 | 40| 0
b, |6 | 9|3 |1a|10]5]| 8

Table 3

Note that only 7 CMTPs
(<4(s—r)—2=14) are to be solved.

Concluding Remarks

a. Two Stage Interval TMTP has been
introduced for the first time and as
such we are not aware of any
solution strategy for the same and

hence no comparative study could
be carried out.

As the problem under study is a
non-convex optimization problem,
some sort of enumeration of
feasible solutions has to be
resorted to. To make enumeration a
viable option very judicious
enumeration is proposed.

In the developed algorithm not
more than (4(s—7)—2) number

of CMTPs are solved to generate
the different pairs of Stage-l and
Stage-Il shipment times.

It is known that a CMTP is solvable
in  polynomial  running time
O(mlogn(m+ nlogn)) (Orlin,
1988). Hence the proposed
algorithm is also a polynomial time
algorithm.

The algorithm proposed for Two
Stage Interval TMTP has been
coded in C++ and verified
successfully with the help of a lot of
test problems of various sizes.
Recordings of some of these
examples are listed in Table 4.




Size of N Longest Shortest No. of No of . .
the C.’.Of Duration Duration | TMTPs | CMTPs pairs Optlmal Optimal
problem partitions Time Time solved | solved | obtained pairs(s) value
2x4 9 29 1 3 1 1 (14,2) 16
2%x8 15 30 4 4 2 2 (13,21) 34
3x5 9 10 1 4 2 2 (7,7) 14
3x9 12 10 1 4 2 2 (7,3) 14
4x5 14 21 1 4 3 1 (8,1) 9
5x5 18 21 2 4 2 2 (13,6), (15,4) 19
6x7 17 18 1 5 3 3 (11,3) 14
7x8 25 30 1 5 3 3 (14,6) 20
7%x9 20 18 1 5 3 3 (7,2) 9
8x7 20 18 1 5 3 3 (9,6) 15
8x8 19 17 1 5 3 3 (6,6), (9,3) 12
8%x10 20 18 1 5 3 3 (8,4) 12
9x7 19 18 1 6 4 4 (4,8) 12
9%x9 19 18 1 4 2 2 (9,5) 14
10%x9 14 12 1 4 2 2 (5,6) 11
10%x10 20 18 1 4 2 2 (4,10) 14
10%x 11 20 18 1 4 2 2 (3,11),(12,2) 14
10%x12 20 18 1 5 3 3 (6,2) 8
10%x14 20 18 1 5 3 3 (4,5) 9
10x15 | 20 18 1 6 4 4 | OOED
12x10 20 17 1 5 3 3 (9,6) 15
15%10 20 17 1 3 1 2 (6,2) 8
20x5 20 17 1 3 1 1 (12,7) 19

Table-4
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