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Abstract   

In this paper, an interior point approach is 
presented for linear programming 
problems by using the logarithmic barrier 
function method, which makes use of 
information on higher derivatives of the 
barrier function to explore search 
directions. The corresponding algorithm is 
derived, and can produce feasible 
successive iterations that have global 
convergence. The computational results 
indicate that the suggested method 
seems better than the standard Newton 
methods. 

 
1.  Introduction 
 
The modern era of interior point method 
dates to 1984, when Karmarkar first 
proposed his algorithm for linear 
programming problems . Since then, 
various interior point methods have been 
considered and developed one way or 
another as an alternative to the simplex 
methods. Logarithmic barrier function 
method is a particular choice among 
many interior point methods due to its 
good performances and “self 
concordance” property . Performance 
of such algorithms tends to be closely 
related to the careful iterative reduction of 
a barrier parameter and the computation 
of the search direction based upon the 
quadratic programming subproblem. 
However, making use of information on 
higher order derivatives of logarithmic 
barrier function to construct interior point 
method, which generate better search 
directions than the traditional technique, 
such as the standard Newton's method, 
maybe an attractive alternative . 
Therefore, it is very important to use the 
higher order interior point method to study 
linear programming problems.  
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The outline of the paper is as follows. In 
Section 2, a brief review of interior point 
method that uses a second order 
approximation is described for linear 
programming problems. A barrier function 

method that takes advantage of the high 
order derivatives is proposed and its 
global convergence is discussed in 
Section 3. Section 4 gives numerical 
experiments and indicates that the 
method proposed seems promising and 
reliable. 
 
2.  Interior point methods for linear 
programming problems 
 
Consider the following linear programming 
problem in the standard form: 
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Assuming that intΩ is nonempty. 
 

For intx Ω∈∀ , by using the logarithmic 
barrier function method, we obtain the 
barrier- programming problem associated 
with (LP): 
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where denotes the natural logarithm 

and

log
0>kµ  denotes the barrier parameter.  

 
Because the logarithmic barrier function 

),( kxB µ requires its arguments to be 
positive, the solution x of (BP) must 

belong to interior point region . It is 

well known  that for any sequence { }
intΩ

]5[ kµ  

with kµ 0↓ , all limit points of { })( kx µ are 
solutions of (LP). 
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To achieve an approximate solution of 

(BP) for a certain value µ of kµ , we solve 
the following quadratic subproblem at the 

 iteration  kth
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The first order Karush Kuhn Tucker (KKT) 
conditions for (BP) are then (or the 
optimization conditions for problem (3) 
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where is the multiplier vector for 
the equation constraint of the problem (3). 

mR∈λ

 
The prototype barrier algorithm for (LP) 
can be specified as follows: 
 
Algorithm 1 —The second order derivative 
model  
 

Step1: Given  and intx Ω∈0 00 >µ , set 
. 0:=k

Step2: If some termination test is 
satisfied, then stop; else go to Step 3. 

Step3: Calculate search directions  
from (4) by performing one or more 

Newton steps, starting at and fixing 

kd

kxx =
µ = µ k . 
Step4: Perform the line search to 

determine a step size kα such that  
    

),()( kkkk xfdxf ≤+α intkkk dx Ω∈+α . 

Step5: Choose ),0(1 kk µµ ∈+ , set 
and go to Step 2.  1: += kk

 

The various algorithms that use above 
framework differ in the way that they 
choose the starting point, the barrier 

parameter kµ , and the step size kα
. For 

instance, short -step algorithms take a 
single Newton step at each of the 
iterations, while long-step algorithms use 

more than one Newton step for each kµ . 
A comprehensive review of interior point 
methods about step length and diversified 
search strategies is given and discussed 
by Wright [5]. In addition, making use of 
higher order interior point method to 
obtain solutions of the optimization 
problems is another efficient approach, 
which seems to offer the computational 
advantage claimed and obtains fast 
convergence [See 6,7,8]. In the next 
section, a logarithmic function interior 
method that makes use of information on 
higher order derivatives is considered and 
some properties of algorithm given are 
described. 

 
3.  Analysis and algorithm  

 
Several variants of the higher order 
interior point methods have been 
developed during the past few years 
[6,7,8]. Usually, they differ in how to 
choose schemes for incorporating higher 
order information about the system (4). In 
this section, we utilize the higher order 
derivations of the logarithmic barrier 

function B (x,µ) in (BP) to construct 
interior point method, that is, by using a 
truncated Taylor series expansion with the 
third order accuracy for barrier function 

),( µxB , search directions of (BP) from 

a point 

d
intx Ω∈ is obtained by solving the 

following optimization problem 
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where and are the ith  component 
of the vector and

)(id )(ix
d x , respectively. 

 
The Lagrangian function of problem (5) 
can be computed as  
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Multiplying both sides of equation (6) by 

, and taking account equation (7), we 
get 

Td
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It is easy to know from (8), we have  
 

Theorem 1. If >0, 

then is a decent direction of (BP) at . 
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T
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If the appropriate search direction has 
been found, we would also to know how 

far (=

kd

kα ) we should travel along the 

direction . A simple approach is as 
follows 

kd

 
{[ }]

.0,1min995.0

0)1,0(max995.0

)(
)(

)(

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

<
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

>+∈=

i
ki

k

i
k

kkk

d
d

x

dxarg ααα

                                                          (9) 

It should be noted here that if is such 

that  and , then 

0x

bAx =0 00 >x bAxk =  

and for every .  0>kx k
 
We now state our algorithm which uses 
the higher derivative information for (BP). 
 
Algorithm 2 —The higher order derivative 
model for (BP) 
 

Step 1: Given intx Ω∈0 and 00 >µ , set 
. 0:=k

Step 2: If some termination test is 
satisfied, then stop; else go to Step 3. 
Step 3: Calculate problem (5) with 

kxx = and fixedµ = kµ to obtain kd
.

Step 4: Compute the step length kα by (9) 

and choose some fixed σ , if kα satisfying 
    

                                                           (10) 
),,(),(),( kk

T
kkkkkkkk xBddxBxB µσαµαµ ∇−≥+−

then go to Step 5; else set 2/: kk αα = and 
go to Step 4. 

Step 5: Set ,1 kkkk dxx α+=+ kk βµµ =+1 , 
1: += kk and go to Step 2. 

 
Next, we give some properties about the 
above algorithm 2 as follows. 
 

Lemma 1. Let  and 

, if is not a 

KKT point of (BP), then 

0* >→ xxk

0)( *12 >→−∇ − HDXIB kkk
*x

0}{ >= kinf αα , 

where kα is the step size that satisfies 
inequation (10). 
 
Proof.  The proof is straightforward.      □ 
 
Theorem 2. When the algorithm 2 is used 
to solve (BP) from any initial 

point intx Ω∈0 , it either stops at a KKT 

point, say , in finite iterations, or 

generates an infinite sequence { } such 

that , 

, then each 

cluster point of { } is a KKT point. 

kx

kx

0* >→ xxk
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Proof.  If the algorithm terminates at in 
finite steps, then the first part of the 
theorem is obvious. Therefore, without 
loss of generality, assuming that an 

infinite sequence { } is generated. Now, 

suppose that is not a KKT point of (BP), 
then from (8) and the algorithm 2, we 
have  

kx
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Since ),( kkxB µ is bounded, for all 
sufficiently large we have k
 
{ 0),(),( →+− kkkkkk dxBxB }µαµ .     (13) 
 
From (11) we obtain 
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By and from 
the lemma 1(
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We can get .                    (15) 0* =→ ddk

 
Thus, from (15) and taking limit each 
sides of (6) and (7) respectively, we 
obtain 
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It would follows that is a KKT point for 
(BP). This is a contradiction and hence we 
complete the proof.   □ 
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Now, we describe the higher order interior 
point algorithm for (LP). 

 

Algorithm 3 

Step 1: Given intx Ω∈0 and 00 >µ , set 
. 0:=k

Step 2: If some termination test is 
satisfied, then stop; else go to Step 3. 
Step 3: Calculate problem (5) with 

and fixedkxx = µ = kµ to obtain . kd

If , then go to Step 5; 
Otherwise, go to Step 4. 

0<∇BTd

Step 4: Calculate problem (3) with 

and fixedkxx = µ = kµ to obtain . kd

Step 5: Compute the step length kα by (9) 
and choose some fixed σ , if 

kα satisfying 
    

  ),,(),(),( kk
T
kkkkkkkk xBddxBxB µσαµαµ ∇−≥+−

then go to Step 6; Otherwise, set 
2/: kk αα = and go to Step 5. 

Step 6: 

Set kkkk dxx α+=+1 , kk βµµ =+1 ( β is a 
positive parameter). 
Step 7: Set and go to Step 2.  1: += kk

 

4.  Numerical experiments 
 

In this section, we present two simple 
example and some medium-scale 
examples to illustrate the application of 
the suggested higher order interior point 
algorithm 3 in Section 3. For purposes of 
comparison, Algorithm 1 is also applied to 
these examples. We chose the 
algorithmic parameters as follows. The 

tolerance error , 
810−=ε 9.00 =µ , 

15.0=β , 35.0=σ . Let the stopping 
criterion of the Algorithm 1 and the 

Algorithm 3 be kd ε≤ . The method 1 
and the method 2 refer to as the second 
derivative interior point method (Algorithm 
1) and the higher order interior point 
method (Algorithm 3), respectively.  
  
Example 1:  
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Table 1: Computational results for 
Example 1(with staring point 

)69,782,378,10,100,2,50(=X  
 

Variables Exact 
solution Method 1 Method 2 

x1 65 64.9999941 65.0000016 

x2 0 0.0000001 0 

x3 20 20.0000013 20.0000008 

x4 0 0 0 

x5 0 0 0 

x6 289 289.0000373 289.0000065

x7 0 0 0 

f (X) 215 214.9999838 215.0000056

   
Example 2: 
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Example 3: 
 
The medium-scale examples are used to 
evaluate the numerical performance in 
Table 3, where the columns give the 
number of equality constraints, the 
dimension (number of variables), 
respectively. All the components of 
coefficient matrix 

nm,

A  and the vector of 
(LP) are uniformly distributed random 
numbers from [0,1]. Let , that is, 

can be used as starting point. 

c

Aeb =

eX =0

 
 

Table 2: Computational results for 
Example 2(with starting point 

 )1.0,,1.0,1.0( L=X
 

Variables Exact 
solution Method 1 Method 2 

x1 316/614 0.5146574 0.5146576

x2 119/614 0.1938100 0.1938111

x3 0 0 0 

x4 0 0 0 

x5 0 0 0 

x6 0 0 0 

x7 0 0 0 

x8 0 0 0 

x9 85/614 0.1384367 0.1384364

x10 94/614 0.1530958 0.1530946

f (X) -
0.4071661 -0.4071739 -0.4071663

 
 

Table 3: Computational results for 
medium-scale examples 

 
Problem size Method 1 Method 2 

M n Iterati
ons time(s) Iterations time(s) 

20 30 21 0.085 18 0.035 

50 80 23 0.209 19 0.086 

100 120 28 0.614 19 0.325 

  
From Table 1 and Table 2, we may note 
that the new approach found better 
solutions than those using the second 
derivative interior point method. From 
Table 3, the iteration counts is relatively 
small, and the computational time is fast, 

then it is advisable to use the higher order 
logarithmic barrier method for the larger 
linear programming problems.   
 
5.  Conclusions 
 
Logarithm barrier function method is an 
appropriate choice among several interior 
point methods and is becoming more and 
more popular due to its better 
performance and “self concordance” 
property. In this paper, a method based 
on higher order interior point algorithm for 
linear programming problems is 
presented and a global convergence for 
this algorithm has been proved. The 
computational results indicate that our 
method is very promising and efficient.  
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