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Abstract

In this paper, an interior point approach is
presented for linear programming
problems by using the logarithmic barrier
function method, which makes use of
information on higher derivatives of the
barrier function to explore search
directions. The corresponding algorithm is
derived, and can produce feasible
successive iterations that have global
convergence. The computational results
indicate that the suggested method
seems better than the standard Newton
methods.

1. Introduction

The modern era of interior point method
dates to 1984, when Karmarkar first
proposed his algorithm for linear

. [1] .
programming problems . Since then,
various interior point methods have been
considered and developed one way or
another as an alternative to the simplex
methods. Logarithmic barrier function
method is a particular choice among
many interior point methods due to its
good performances and “self

» [2,3,4]
concordance” property . Performance
of such algorithms tends to be closely
related to the careful iterative reduction of
a barrier parameter and the computation
of the search direction based upon the
quadratic  programming  subproblem.
However, making use of information on
higher order derivatives of logarithmic
barrier function to construct interior point
method, which generate better search
directions than the traditional technique,
such as the standard Newton's method,

. . [6,7.8]
maybe an attractive alternative .
Therefore, it is very important to use the
higher order interior point method to study
linear programming problems.

The outline of the paper is as follows. In
Section 2, a brief review of interior point
method that uses a second order
approximation is described for linear
programming problems. A barrier function

method that takes advantage of the high
order derivatives is proposed and its
global convergence is discussed in
Section 3. Section 4 gives numerical
experiments and indicates that the
method proposed seems promising and
reliable.

2. Interior point methods for linear
programming problems

Consider the following linear programming
problem in the standard form:

min f(x)=c' x
(LP) Ist Ax=b (1)
x>0

where GX€R" AeR™" gng beR™.

We make the basic assumption that the

matrix A has full row rank. A point Xis

said to be an interior point

def N
i X € Qi I{XG R |Ax=b,x>0}.
Q

Assuming that *“intis nonempty.

For VXEQW, by using the logarithmic
barrier function method, we obtain the
barrier- programming problem associated
with (LP):

n

min B(X, ) = ¢ X - & Y. l0g(x;)
i=1

st. Ax=Db

(BP) (2)
where 109 denotes the natural logarithm

and #k ~ 0 denotes the barrier parameter.

Because the logarithmic barrier function

B(X #4) requires its arguments to be
positive, the solutionXof (BP) must

belong to interior point region Qi“t. It is
well known Bl that for any sequence {”k}

with 2« 4 0 all limit points of ()] gre
solutions of (LP).
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To achieve an approximate solution of
(BP) for a certain value # of #k, we solve
the following quadratic subproblem at the
kth jteration

min VBTd+%dT(VZB)d

st. Ad=0 3)

where
V2B =V2B(X, ) = X 2

X :diag(xl,xz,---,x“) X' (i=12n) i

the composition of the
e=(L--1)" eR"

VB = VB(x, 1) =Cc— uX e

vector X,

The first order Karush Kuhn Tucker (KKT)
conditions for (BP) are then (or the
optimization conditions for problem (3)

[VZB ATJ( d J_ (VBJ
A o Jl-4) Lo

(4)
where 4€R" is the multiplier vector for
the equation constraint of the problem (3).

The prototype barrier algorithm for (LP)
can be specified as follows:

Algorithm 1 —The second order derivative
model

Step1: Given X0 €Qint gng Ho >0 get
k=0

Step2: If some termination test is
satisfied, then stop; else go to Step 3.

Step3: Calculate search directions di
from (4) by performing one or more

Newton steps, starting at X=X and fixing
ﬂzﬂb
Step4: Perform the

determine a step size Zk such that

line search to

f(Xk +(dek)£ f(Xk)’ Xk +0{kdk EQim

Step5: Choose Hi € (0, 44¢) , set
k:=k+1and go to Step 2.

The various algorithms that use above
framework differ in the way that they
choose the starting point, the barrier

parameter “ | and the step size %< For
instance, short -step algorithms take a
single Newton step at each of the
iterations, while long-step algorithms use

more than one Newton step for each M
A comprehensive review of interior point
methods about step length and diversified
search strategies is given and discussed
by Wright [5]. In addition, making use of
higher order interior point method to
obtain solutions of the optimization
problems is another efficient approach,
which seems to offer the computational
advantage claimed and obtains fast
convergence [See 6,7,8]. In the next
section, a logarithmic function interior
method that makes use of information on
higher order derivatives is considered and
some properties of algorithm given are
described.

3. Analysis and algorithm

Several variants of the higher order
interior point methods have been
developed during the past few vyears
[6,7,8]. Usually, they differ in how to
choose schemes for incorporating higher
order information about the system (4). In
this section, we utilize the higher order
derivations of the logarithmic barrier

function B (X, l’l) in (BP) to construct
interior point method, that is, by using a
truncated Taylor series expansion with the
third order accuracy for barrier function

B(X'”), search directions d of (BP) from

a point X & Qipy is obtained by solving the

following optimization problem

. B T 1 T ) _ﬁ n (d(i))S
min ¢(x, 1) = VBTd + 2d (V2B)d 3 ; oY
st.Ad =0
...(5)

where d(')and X(')are the ith component

of the vector 4 and X, respectively.

The Lagrangian function of problem (5)
can be computed as
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L=vBTd+1dT(v?B)d -~ :
2 34 (x0)3

Hence

oL 2 3 T

& —VB+V?Bd - X °Dd - A" 2

o =0 ()

A _aTq

o =0 (7)
—di O qg@ ... gm

where D=diagld®.d@ ...d®)

Multiplying both sides of equation (6) by

d’ , and taking account equation (7), we
get

d"VB =-d"V?Bd +d" X *Dd
=—d"V?B(l-X 'D)d
( ) ®8)
It is easy to know from (8), we have
Theorem 1. If dkTszk(l - Xk_le)dk >0,

then dy is a decent direction of (BP) at X,

If the appropriate search direction di has
been found, we would also to know how

far (=ak) we should travel along the

direction dk. A simple approach is as
follows

o =0.995[arg max{x e (00|, +ad, >0]]

NORNS
~0.995mind |1, -~k ld D <o .
d{

)
It should be noted here that if Xo is such
that X0 =D X, >0 , then A%k =D

and *x > Ofor every K.

and

We now state our algorithm which uses
the higher derivative information for (BP).

Algorithm 2 —The higher order derivative
model for (BP)

Step 1 Given X0 €Qint gng 4o >0, set
k=0

n (i)\3
@) AT Ad

Step 2: If some termination test is
satisfied, then stop; else go to Step 3.
Step 3: Calculate problem (5) with

X=X and fixed % = “k to obtain A
Step 4: Compute the step length %k by (9)
and choose some fixed 7 , if %k satisfying

B(X, ) — B(Xy +ai Ay, 1) = —oer dy VB(Xy., a1y ),
(10)

then go to Step 5; else set %k =ax ]2 gng
go to Step 4.

Step 5: Set k1 = X« + oyt = B
k:=k+1land go to Step 2.

Next, we give some properties about the
above algorithm 2 as follows.

Let Yk X >0

Lemma 1. and
V2B, (1-X, D) > H" >0 4 X" is not a
a=inf{a,}>0

KKT point of (BP), then
where %kis the step size that satisfies
inequation (10).

Proof. The proof is straightforward. o

Theorem 2. When the algorithm 2 is used
to solve (BP) from any initial

point Xo eQi"t, it either stops at a KKT
point, say Xk, in finite iterations, or
generates an infinite sequence {Xk} such
that X —>x >0

2 -1 *
\% Bk(I—Xk Dk)—)H >0’ then eaCh

cluster point of { ¥k} is a KKT point.

Proof. If the algorithm terminates at Xin
finite steps, then the first part of the
theorem is obvious. Therefore, without
loss of generality, assuming that an

infinite sequence {Xk} is generated. Now,

suppose that X is not a KKT point of (BP),
then from (8) and the algorithm 2, we
have

B(Xy, 44 ) —B(X +aydy, 1) = —owr dg VB
=oa,dg V2B(1 - X'Dy)d, >0 (11)

Hence,

B(Xk, 1) = B(x, +akdku“k)_ (12)
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since B #)is pounded, for all
sufficiently large K we have

B0 211) = B(X, +0‘kdk,ﬂk)}—>0‘ (13)

From (11) we obtain

oa,dy V?B(l - X *D,)d, —0
(14)

V2B, (I -X, 'D,) > H >0

By and from
the lemma 1(% is a positive parameter),
We can get dy »d =0 (15)

Thus, from (15) and taking limit each
sides of (6) and (7) respectively, we
obtain

{vs(x*, 1u)—AT 1 =0,

Tq* _
A'd =0. (16)

It would follows that X is a KKT point for
(BP). This is a contradiction and hence we
complete the proof. o

Now, we describe the higher order interior
point algorithm for (LP).

Algorithm 3

Step 1: Given Xo €Qint gng Ho > 0, set
k=0

Step 2: If some termination test is
satisfied, then stop; else go to Step 3.
Step 3: Calculate problem (5) with
X=Xk and fixed # = “<to obtain Ik .

If 4" VB <0 then go to Step 5;
Otherwise, go to Step 4.
Step 4: Calculate problem (3) with

X=X and fixed # = “ to obtain Yk .

Step 5: Compute the step length %k by (9)
and choose some fixed 2 , if

%k satisfying

B(Xc, 22) —~ B(X +arcy, ) = —oay dig VB(Xy, 1),
then go to Step 6; Otherwise, set

o = 12
Step 6:
Set Xk = Xk + @ dy M = By ('Bis a
positive parameter).

Step 7: Set k==k+1and go to Step 2.

and go to Step 5.

4. Numerical experiments

In this section, we present two simple
example and some medium-scale
examples to illustrate the application of
the suggested higher order interior point
algorithm 3 in Section 3. For purposes of
comparison, Algorithm 1 is also applied to
these examples. We chose the
algorithmic parameters as follows. The

tolerance error  €=10"  #o =09
B=015 5-035 |et the stopping
criterion of the Algorithm 1 and the

Algorithm 3 be o] < €. The method 1
and the method 2 refer to as the second
derivative interior point method (Algorithm
1) and the higher order interior point
method (Algorithm 3), respectively.

Example 1:

min f(X)=3x; +2X, + X3 +4X,
2Xq +4X, +5X3 — X5 =230

st.
5%; +2X, + X3 +6X, —X; =345
X; 20,i=12,---,7
Table 1: Computational results for
Example 1(with staring point
X =(50,2,100,10,378,782,69)
Variables =3 Method 1 Method 2
solution

X1 65 64.9999941 65.0000016

Xo 0 0.0000001 0

X3 20 20.0000013 20.0000008

X4 0 0 0

X5 0 0 0

Xe 289  289.0000373 289.0000065

X7 0 0 0

f(X) 215 214.9999838 215.0000056
Example 2:
min  f(X) ==Xy +3X, +3X3 + 2X4 +4X5 +2Xg +2X7 +5Xg + Xg —4Xyg

3X1 +2X, —5X5 + 3%, +8X5 —7Xg +3X7 +6Xg —4Xg — 9%,y =0

2Xq +3Xy —9X, +4Xg +3Xg — X7 +9Xg —5Xg —6X15 =0
st 9—3%; +10%, —2X3 + X4 — X5 —4Xg +3X; —2Xg +6Xg —8%;y =0

Xy +Xp +Xg + Xy +Xg + Xg + X7 +Xg +Xg + X9 =1
X 20,i=1--10
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Example 3:

The medium-scale examples are used to
evaluate the numerical performance in
Table 3, where the ™ N columns give the
number of equality constraints, the
dimension  (number of variables),
respectively. All the components of
coefficient matrix A and the vector Cof
(LP) are uniformly distributed random

numbers from [0,1]. Let P=A€  that is,

X 0 _ . .
=€ can be used as starting point.

Table 2: Computational results for
Example 2(with starting point
X =(0.10.3---,0.2)

Variables _EX@°t  Method 1 Method 2
solution
%; 316/614 0.5146574 0.5146576

X2 119/614 0.1938100 0.1938111

X3 0 0 0
X4 0 0 0
X5 0 0 0
Xg 0 0 0
X7 0 0 0
Xg 0 0 0
Xg 85/614  0.1384367 0.1384364
X10 94/614  0.1530958 0.1530946
f(X) 04071661 -0.4071739 -0.4071663

Table 3: Computational results for
medium-scale examples

Problem size Method 1 Method 2
M n lterati time(s) lterations time(s)
ons

20 30 21 0.085 18 0.035
50 80 23 0.209 19 0.086
100 120 | 28 0.614 19 0.325

From Table 1 and Table 2, we may note
that the new approach found better
solutions than those using the second
derivative interior point method. From
Table 3, the iteration counts is relatively
small, and the computational time is fast,

then it is advisable to use the higher order
logarithmic barrier method for the larger
linear programming problems.

5. Conclusions

Logarithm barrier function method is an
appropriate choice among several interior
point methods and is becoming more and
more popular due to its Dbetter
performance and “self concordance”
property. In this paper, a method based
on higher order interior point algorithm for
linear programming problems is
presented and a global convergence for
this algorithm has been proved. The
computational results indicate that our
method is very promising and efficient.
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