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Abstract 
 
Due to the random nature of the ship’s 
motion in an open water environment, the 
deployment and the landing of air vehicles 
from a ship can often be difficult and even 
dangerous.  The ability to reliably predict the 
motion will allow improvements in safety on 
board ships and facilitate more accurate 
deployment of vehicles off ships.  This paper 
presents an investigation into the application 
of artificial neural network methods trained 
using singular value decomposition and 
conjugate gradient algorithms for the 
prediction of ship motion.  It is shown that 
accurate predictions of up to ten seconds 
can be achieved.   

Introduction  
 
This paper presents an algorithm that is 
designed to be applied to the prediction of 
ship motion.  The algorithm is intended to be 
used to aid the successful deployment of 
aircraft vehicles that are currently used on 
ships that operate in open sea environments.  
The future ship motion is likely to aid 
deployment and subsequently recovery of air 
vehicles from ship platforms.  The motion of 
a ship in an open water environment is the 
result of complex hydrodynamic forces 
between the ship, the water and unknown 
random processes.  This leads to the 
necessity to use statistical prediction 
methods for the prediction of this motion 
rather then a deterministic analysis, which 
would lead to a ship specific model that 
involves highly complex calculations [1], a lot 
of ship specific information which will make 
portability of the algorithm difficult and will 
require a significant simplifications and 
assumptions which is likely to introduce 
errors.  Past attempts at ship motion 
prediction [2, 3, 4, 5] have shown that 
traditional statistical prediction techniques 
such as the autoregressive moving average 

models and Kalman filters are unable to 
maintain a high degree of accuracy when the 
prediction interval is increased above 2-3 
seconds when predicting ship motion in high 
sea states of 5 and above.  The traditional 
statistical techniques used for time series 
prediction have difficulty dealing with noisy 
data, do not have much parallelism and fail 
to adapt to circumstances.  This paper 
explores the use of artificial neural networks 
which is a form of artificial intelligence to 
develop an algorithm that is capable of 
predicting ship motions.  Artificial neural 
networks, in contrast to traditional statistical 
techniques, promise to produce predictions 
with high accuracy as well as high efficiency 
due to their ability to learn and adapt 
according to the conditions present.   

Artificial Neural Networks  
 
A neural network is simply a series of 
neurons that are interconnected to create a 
network [6].  Artificial neural networks (ANN) 
have been inspired by biological neural 
networks.  The use of ANN in time series 
prediction relate to the application of ANN for 
the nonlinear system identification.  The use 
of ANN is particularly appealing because of 
their ability to learn and adapt which will be 
important for this investigation as one of the 
underlying goals is to create an algorithm 
that is able to work in all conditions and 
environments.  The ANN architecture that 
will be used to create the ANN for time 
series prediction will be the multi-layer feed-
forward ANN.  This type of architecture has a 
minimum of two layers consisting of the input 
layer and the output layer.  In this 
investigation a three layered feed forward 
neural network consisting of an input layer, a 
hidden layer and an output layer is used.  In 
a feed-forward ANN the inputs for each layer 
come from the preceding layer.  A single 
neuron is shown in Figure 1.  It has n inputs 
including a bias term, which has been set to 



1 in this investigation.  The inputs are each 
multiplied by their corresponding weight 
value, which are summed together and 
subsequently entered into an activation 
function.  The output of the activation 
function will correspond to the output of the 
neuron. 
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Figure 1:  A representation of a single 
neuron 

 
Mathematically, the output of a neuron is 
given as:  
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where the inputs are 1,,0, −= nixi L .  
Generally the neuron’s operation is not 
affected significantly by the activation 
function (f (net)) but the training speed is 
affected somewhat [7].  The activation 
function is usually a non-linear function that 
will determine the output of the neuron.  Its 
domain is generally all real numbers.  The 
range of the output for an activation function 
is usually limited between 0 to 1 and 
sometimes -1 to 1.  The majority of activation 
functions use a sigmoid (S shaped) function.  
In this investigation the activation function 
shown below was primarily used: 

 ( ) ( )netnetf tanh=            (2) 

The use of ANN for time series prediction 
has a number of distinct advantages.  Firstly, 
there is also no need to choose any 
particular model for the ANN.  A validation 
process is included to ensure that the ANN is 
working correctly.  If the architecture of the 
ANN is poorly designed, the ANN may be 
able to learn irrelevant details specific to the 
training set which will lead to an ANN that is 
only relevant to the training set.  Conversely, 
the ANN may have a deficient architecture 
where the ANN is not able to learn the 
subtleties required for accurate outputs.  The 
validation process should reveal these 

problems and is discussed in detail in 
section 2.2.   

Training the Network  
 
The training of the network can be viewed as 
a minimization process where the weights in 
the ANN are systematically adjusted in a 
manner that reduces the error between the 
output of the ANN and the desired output.  
Therefore the process of training the neural 
network becomes an optimization problem 
where the performance of the neural network 
will be dependent upon the quality of the 
solution found after the training process has 
been completed.  The aim of this 
investigation is to develop a methodology to 
predict ship motion in real time.  Singular 
value decomposition (SVD) is a linear 
regression technique that can quickly obtain 
an approximate set of optimum weights 
which is far superior to randomly generating 
the weights.  A detailed description of the 
SVD technique is beyond the scope of this 
paper but essentially the matrix X which 
satisfies the function: 

 BA.X =                             (3) 

when A and B are known can be calculated 
efficiently using SVD.  When applying it to 
the ANN process the weights between the 
input layer and the hidden layer are initially 
randomly generated.  The training samples 
are then inserted into the ANN and the 
hidden layer activation functions are 
calculated creating a matrix equivalent to A.  
Also, the values for the inverse transfer 
function of the output are also calculated 
creating a matrix equivalent to B.  Applying 
SVD and solving Equation 3, the 
approximate optimal weights X are found.  
The conjugate gradient (CG) algorithm 
created for the ANN in this investigation was 
based on the Polak-Ribiere algorithm and is 
used with the SVD method.  The 
mathematical justifications for the algorithm 
are beyond the scope of this paper but a 
detailed description can be found in Polak 
[15].  In a general sense, the algorithm 
generates a sequence of vectors and search 
directions.  It can be shown that the exact 
minimum will be obtained if the multi-
dimensional function can be expressed as a 
quadratic.  The ANN error function is 
quadratic close to the minimum so it is 
expected that once close to a minimum, 
convergence to the local minimum will be 
very rapid [10].  Therefore the best values 
returned from running the SVD can be used 



as the initial starting point for the conjugate 
gradient search.   
 

Validation of ANN model 
 
To ensure that the weights in the ANN have 
been correctly set and that the output of the 
ANN is sufficiently reliable, a validation 
process is applied after training has been 
completed.  The set of known inputs with 
their desired output needs to be divided into 
two distinct sets.  The first set is the training 
set and is used throughout the training 
period to adjust the weights to the 
appropriate values as discussed previously 
in section 2.1.  The second set is referred to 
as the validation set and is used to test the 
ANN.  Once the values of the training set 
have been determined, the inputs from the 
validation set are inserted into the ANN and 
the output of ANN is compared with the 
target values in the validation set.  The 
validation process is included to ensure that 
the ANN is working correctly and to ensure 
that the ANN has not overfitted the data.  
The architecture of the ANN refers to the 
number of neurons that are used in the input 
and hidden layers.  If the architecture of the 
ANN is poorly designed, the ANN may be 
able to learn irrelevant details specific to the 
training set which will lead to an ANN that is 
only relevant to the training set.  Conversely, 
the ANN may have a deficient architecture 
where the ANN is not able to learn the 
subtleties required for accurate outputs.  The 
validation process should reveal these 
problems.  The entire ANN process including 
the validation process is shown in Figure 2. 
   

 
Figure 2: The ANN process 

 
It can be clearly seen that the first stage 
involves inputting the training set into the 

ANN.  The ANN adjusts its weights in the 
‘learning’ process until the error between the 
target values and the output of the ANN is 
reduced to a minimum.  Next, the validation 
set is inputted into the ANN.  The output of 
the ANN is compared to the target values of 
the validation set and the ANN is accepted if 
the error is of a low enough value or 
alternatively rejected if the error is too high.  
The error in the validation set may be higher 
than the error found at the end of training but 
should not be significantly larger or there is a 
problem with the ANN.  Also, the validation 
set should be independent to the training set 
to ensure that there is no bias added into the 
validation process.  It is not permissible to 
use any of the training data in the validation 
stage, as this will not give a good indication 
of the ANN’s validity.   

Application of ANN to Ship Motion 
Prediction  
 
The algorithms developed were 
subsequently applied to measured ship roll 
angle data taken from a cruiser size vessel 
operating in sea states 5-6.  The term sea 
state is a description of the properties of sea 
surface waves at a given time and place [14].  
The greater the sea state the rougher the 
conditions.  The results shown in this section 
are the average results obtained by applying 
the algorithm to four separate ship motion 
databases. Each database had 
approximately 600 seconds of roll angle data 
available sampled at 2Hz.  The training data 
was set to two thirds of the data sets and the 
validation set was designated as the final 
third of the data sets.  All results shown in 
this section are the predictions made using 
the validation set only.  A graphical 
representation of the results is shown in 
Figure 3 while an example prediction is 
shown in Figure 4.   
 

 
Figure 3:  Prediction of roll motion (frigate 

class ship in sea state 5-6) 



 
In this investigation the ANN had eight 
neurons in the input layer and three neurons 
in the hidden layer.  The output layer 
naturally only had one neuron.  Therefore, 
for every lead prediction interval a single 
ANN is used.  The ANN is capable of 
creating multiple predictions of different 
magnitude but it is better that a separate 
ANN is used for every prediction interval.  
The basis for the presumption is that the 
weights for an optimal prediction will vary 
according to the prediction interval desired.  
By having the ANN create multiple 
predictions, the overall optimal prediction 
cannot be made.  By having separate ANN 
create separate predictions, the optimal 
weight configuration can be obtained for 
each prediction and therefore, higher 
accuracy can be expected.  During the 
training process thirty separate trials were 
conducted using the SVD training algorithm 
and then the best solution was chosen and 
inserted into the CG algorithm as the initial 
starting point for the CG search.  Figure 3 
shows that at low prediction intervals the 
accuracy levels are extremely high and the 
quality of the predictions reduces as the 
prediction interval is increased.  This is as 
expected.  One of the anomalies that can be 
seen in Figure 3 is that the 4 second 
prediction is better than the 3 second 
prediction.  The explanation for this anomaly 
relates to the operation of the SVD algorithm.  
As stated in section 0, when applying the 
SVD to the ANN process the weights 
between the input layer and the hidden layer 
are initially randomly generated.  Therefore 
the ANN was able to produce exceptionally 
high levels of accuracy for one of the 
databases because it had a very good set of 
randomly generated weights and therefore 
the overall average was very high.  To 
ensure that the ANN has be best set of initial 
weights it would be necessary to conduct as 
many trials as possible of the SVD as each 
trial would have a unique set of input weights 
and potentially lead to better overall 
accuracy.  However, there is an associated 
cost in the form of computational processing 
time.  It can be clearly seen in Figure 3 that 
the accuracy level when the prediction 
interval is ten seconds is approximately 40%.  
This may seem quite poor but if Figure 4 is 
examined it is evident that the ship motion is 
still very well represented.   
 

 
Figure 4: Sample 10 second in advance 

prediction generated using the ANN 
algorithm with 8 neurons in the input layer 

 
The important aspect that should be 
considered with regards to Figure 4 is that 
the large fluctuations in the amplitude of the 
motion are well represented.  The ANN was 
also able to predict the region of motion and 
3 neurons in the hidden layer where the 
amplitude is not large which is equally 
important.  For example, if one wanted to 
land a helicopter on a ship deck the pilot 
would be interested to know when the roll 
motion would have a large amplitude as this 
would make it unsafe to land, but equally 
important is knowing when the amplitude is 
low as this would mean that it would be safer 
to land.  Therefore, as the motion of the ship 
as the low and high amplitude motion is 
predicted, even in predictions of up to 10 
seconds, the ANN algorithm trained using a 
combination of the SVD and CG algorithms 
is very effective.   

Conclusion  
 
In this paper an artificial neural network 
based method utilizing a combination of the 
singular value decomposition and conjugate 
gradient algorithm for the prediction of the 
ship motion was presented.  It was shown 
that the artificial neural networks were 
capable of learning the motion and 
producing accurate predictions for intervals 
up to 10 seconds.  The most important 
outcome of the investigation was that the 
high and low amplitude motion was very well 
represented for all prediction interval lengths.   
 
Acknowledgements: The first-named author 
would like to thank BAE Systems for 
providing funding and support for the project.   
 
 
 



References  
 
[1] Price, W.  G.,Bishop, R.  E.  D.: 

Probabilistic theory of ship dynamics, 
Chapman and Hall Ltd, Salisbury, 
(1974) 

[2] Yumori, I.: Real time prediction of ship 
response to ocean waves using time 
series analysis, OCEANS, 13, No.  
(1981), 1082{1089 

[3] Cortes, N.  B.: Predicting ahead on 
ship motions using Kalman filter 
implementation, RMIT University, 
Melbourne, (1999) 

[4] Crump, M.  R.: The Dynamic and 
Control of Catapult Launching 
Unmanned Air Vehichles from Moving 
Platforms, RMIT University, 
Melbourne, (2002) 

[5] Sidar, M.  M.,Doolin, B.  F.: On the 
feasibility of real-time prediction of 
aircraft carrier motion at sea, IEEE 
Transactions on Automatic Control, 
28(3), (1983), 350{356 

[6] Suykens, J.  A.  K., Vandewalle, J.  P.  
L., Moor, B.  D.: Artificial neural 
networks for modeling and control of 
non-linear systems, Kluwer Academic 
Publishers, Dordrecht, (1996) 

[7] Masters, T.: Practical neural network 
recipes in C++, Academic Press, 
Boston, (1993) 

[8] Obitko, M.: Genetic algorithms, 
Prague, 1998, Viewed Access (1998), 
http://cs.felk.cvut.cz/»xobitko/ga/ 

[9] Rumelhart, D., McClelland, J., Group, 
P.  R.: Parallel distributed processing, 
MIT Press, Cambridge, (1986) 

[10] Press, W.  H., Flannery, B.  P., 
Vetterling, W.  T., Teukolsky, S.  A.: 
Numerical recipes in Fortran: The art 
of scientific computing, Cambridge 
University Press, New York, (1992) 9 

[11] Polak, E.: Computational methods in 
optimisation, Academic Press, New 
York, (1971) 

[12] Haupt, R.  L., Haupt, S.  E.: Practical 
Genetic Algorithms, John Wiley and 
Sons, (1998) 

[13] Man, K.  F., Tang, K.  S., Kwong, S.: 
Genetic Algorithms, Springer Verlag, 
London, (1999) 

[14] Keefer, T.: Glossary of Meteorology, 
Allen Press., Boston, 2005, Viewed 
Access (2005), URL: 
http://amsglossary.allenpress.com/glo
ssary 

[15] Polak, E.: Computational methods in 
optimisation, Academic Press, New 
York, (1971) 10  



 
 

 
 
 
 
 
 
 

19th National Conference of the 
Australian Society for Operations Research 

Melbourne, Victoria 
3 – 5 December, 2007 

 
The conference provides a forum for optimisation researchers and operations 
research practitioners to exchange ideas and discuss their latest research and 
applications.  
 
Full details will be available soon on the conference website which is being 
established. Further information can be obtained from A/Prof. Baikunth Nath 
(baikunth@unimelb.edu.au) and Prof. Santosh Kumar (skumar@csm.vu.edu.au). 
 

a r 


