

A Simple Rule-Based Assembly Line Sequencer

Ian Hogan1

Abstract

This article describes a simple rule-based
assembly line sequencer which was
developed and implemented at the Nissan
Australia manufacturing plant in the late
1980's. The aim of this article is to illustrate
how a simple algorithm resulted in a major
improvement in assembly line sequencing.
It also shows how implementing this
algorithm in a database language integrated
the results easily into routine operations.
Finally, it briefly covers related work in
minimising colour changes in the paint-shop
and sub-assembly planning.

Keywords: Heuristic Algorithm, Production
Sequencing, Rule-based systems

The Problem

This work was part of a larger project to
automate the production planning and
scheduling tasks for the Nissan Australia
vehicle assembly plant at Clayton, Victoria.
The production plan, which was driven by
dealer demand, determined the mix of

m
d
p
w
o

Prior to the development of the algorithm
described below, the sequence was
produced by hand. Essentially a set of job
cards was produced, each of which listed
the vehicle serial number and its model
code, options, colour and trim. A production
supervisor would then "shuffle" the cards
according to a set of explicit and implicit
rules. These rules were different for each of
the two body assembly lines. The rules
related to the work rates of the various sub-
assembly areas and the work content of the
different vehicle models.

For example, on the Pintara / Skyline
body assembly line, rules included that
every third vehicle should be a station-
wagon, automatic and manual vehicles
should be evenly distributed and that top
range vehicles should be well spaced
throughout the assembly line, rather than
being bunched together.

The Algorithm

The basis of this heuristic algorithm was
to categorise the vehicles according to a

_

1

0: (258)
MODEL

00: (150)
BODY

U121<999>

000: (74)
TRANS

01: (108)
BRAND

U122<999>

001: (76)
TRANS

010: (75)
TRANS

011: (33)
TRANS

SEDAN<1> WAGON<1> NISSAN<2> ELSE<1>

0000: (50)
LEAF

0001: (24)
LEAF

0110: (17)
LEAF

0111: (16)
LEAF

0100: (49)
LEAF

0101: (26)
LEAF

0010: (51)
GRADE

0011: (25)
LEAF

AUTO<2> MAN<1> AUTO<2> MAN<1> AUTO<2> MAN<1> AUTO<1> MAN<1>

00100: (34)
LEAF

00101: (17)
LEAF

GXP<2> ELSE<1>

Figure 1: Example Rule-Set.
odels scheduled to start assembly each
ay. One requirement of the project was to
roduce the build list for the day – that is,
hat vehicle to commence building in what
rder.

hierarchical set of rules. This can be
viewed as a tree with the branch nodes
corresponding to the rules and the leaf
nodes corresponding to the different vehicle
sub-categories. In addition to the rules
specifying the branching decisions, a
branch order and frequency were specified.
This is summarised in Figure 1, and the
following notes:

 THINKronicity P/L, Melbourne, Victoria, Australia (Email: Ian.Hogan@THINKronicity.com.au)

2 ASOR BULLETIN, Volume 23 Number 3, September 2004

• The set of leaf nodes constitute a disjoint
partition of the set of vehicles to be
called up for each day's production –
that is, each vehicle will meet the criteria
for exactly one leaf node.

• The number in the top left corner of each

node is the node id, and corresponds to
the path from the root node to that node.

• The number in brackets indicates the

number of vehicles meeting the criteria
for that path.

• The word in the node is either LEAF for

a leaf node, or the name of a vehicle
attribute used for the decision rule.

• The word on the arc between nodes

indicates the value of the vehicle attrib-
ute corresponding to that path, or the
word ELSE for values not matching the
ones specified on the other branches.

• The number in angle brackets is the
branch frequency – that is, the number

of consecutive traversals of that branch
permitted.
To select each vehicle, the program

traversed the tree from the root to a leaf
node in a recursive fashion. Pseudo-code
for the algorithm is shown in Figure 2.

A worked example of the algorithm is
shown in Appendix I, so its working can be
fully understood. For simplicity a single
vehicle model is used in the example.
Appendix II shows the Python program
used to elaborate the sequence for
Appendix I.

Implementation Issues

The main challenge in implementing this
algorithm was the language used for the
production planning system – Adabas
Natural – which was designed for business
databases. For example, at that time
Natural only had single dimensioned arrays
and as I recall did not support recursive
functions. However once the algorithm was
coded, execution time was only a matter of
seconds to sequence a day's production.

ASOR BULLETIN, Volume 23 Number 3, September 2004 3

This fast execution time meant that, if
required, the rules could be adjusted and
the effect on the production sequence could
be seen very quickly. This was an
important issue at the start of the process
when the rules were being developed. The
rules editor presented the user with a view
of a single node in the decision-tree, and
allowed them to adjust the parameters of
that node, and easily navigate to parent or
sub-nodes.

Once a sequence schedule was built for
a day, the production management staff
were able to view the sequence on-screen,
and adjust it if they felt that fine-tuning was
needed. Once they were satisfied with the
sequence, they printed bar-coded cards and
job-schedule reports which were issued to
the factory floor staff. The daily sequencing
process is illustrated below in Figure 3.

Automating this task reduced what had
been a two hour or more manual task to
about 15 minutes work or less.

The Acid Test

One of the interesting elements of this
task was seeing how the end-users would
work with the decision-tree to create the
required build-sequence. The main user told
me she had never heard of the word node
before, other than the thing you blew when
you “had a bad cold in da node”! The
challenge was really apparent when I left
the company and moved interstate shortly
after the implementation of this work.
However, I re-joined the company about 8
months later after returning from interstate,
and found that the production planning staff
had taken to the system very well, and had
adjusted the rules to suit the needs of the
factory with different models coming in.
Having been closely involved in the design
and implementation of the system, they had
a strong sense of ownership and
engagement.

Related Work

Main:
SequenceNumber = 1

 Repeat
 RecordVehicle(SequenceNumber, GetNextVehicle(root-node))
 SequenceNumber = SequenceNumber + 1
 Until root-node.UnAllocatedCount = 0

GetNextVehicle(node):

 If node.UnAllocatedCount=0 Then:
 Return GetNextVehicle(node.parent)

 ElseIf node.Type = Leaf Then
 Decrement(node.UnAllocatedCount)
 Return node.NextVehicle

 Else:
 Return GetNextVehicle(GetNextActiveBranch(node))

GetNextActiveBranch(node):
 If node.ActiveBranch.UsedCount < node.ActiveBranch.RepeatCount Then:
 Increment(node.ActiveBranch.UsedCount)
 Else:
 node.ActiveBranch = (node.ActiveBranch+1) Mod node.BranchCount
 node.ActiveBranch.UsedCount = 1

 Return node.ActiveBranch

RecordVehicle(SequenceNumber , VehicleId):
 Insert (SequenceNumber , VehicleId) Into VehicleCallupTable

Figure 2: Pseudo-Code for the Algorithm

4 ASOR BULLETIN, Volume 24 Number 2, June 2004

As part of the new production planning
system, the opportunity was taken to reduce
the frequency of paint colour changes in the
spray painting area. As there is both a time
and material cost to each paint change, this
would improve efficiency in this area. The
mechanism to achieve this reduction was
devised by the production manager, and is
in the “crude but effective” category. As
each week’s vehicle production was
allocated, the vehicles for that week were
sorted by paint colour, with alternate weeks
going from light to dark and dark to light. As
around half of the plant output was white
vehicles this made for quite a number of all-
white vehicle days in the plant.

As an aside, it was interesting to watch
the demeanour of the production manager
during the introduction of this paint-sorting
feature. On the first day that there were
only white vehicles in the plant he was
delighted. However as the week
progressed and four days later there were
still only white cars in the plant, he was
beginning to get worried! However
investigations revealed that there had been
a subconscious bias in the manual planning
process, and a backlog for white cars had
built up. Once this backlog worked its way
out of the system, the process was a great
success.

Another aspect of the system was
introduction of the bar-code vehicle tags,
which were exchanged at the major break-
points in the production line. As the cards
were brought back to the planning office
they were read into the computer system,
and hence the progress of each vehicle was
tracked through the production line. Note,
due to some vehicles being side-lined for
special parts, re-work or the need for two-
tone paintwork, vehicles do not all progress
through the production line at the same
rate. This tracking information was then
used to drive a 3-day forecast for material
supply and sub-assembly areas. This
helped reduce delays due to material
shortages, and helped with a move towards
JIT (Just in time) production.

Select Day
to Sequence

Generate
Sequence

Is
Sequence

Ok?

Are
Rules
Ok?

Edit Rules

Adjust
Sequence

Freeze
Sequence

 Print
Vehicle Cards

 Yes

Generate
Serial

Numbers

 No

No

 Yes

Conclusion

From these examples it can be seen that it
is possible to dramatically improve
production operations just with simple, but
appropriate, models and algorithms. The
dynamic nature of many production facilities
would seem to prohibit the use of traditional
optimisation techniques for day-to-day
operations. This is not to deny their
importance in long-range production and
capacity planning.

Figure 3: Sequencing Operation
Flowchart.

Acknowledgements
I would like to thank Nissan Australia for

permission to document this work. In
particular I would like to thank Mr Bandu
Dissanayake2, not only for his assistance in
obtaining this permission, but also for his
insightful management during my time at
Nissan. I would also like to thank the IT and
Production Planning staff at for their support
during this development.

2. National Manager – Systems Develop-

ment, Information Technology, at Nissan
Motor Co. (Australia) Pty Ltd.

ASOR BULLETIN, Volume 23 Number 3, September 2004 5

__

1 THINKronicity P/L, Melbourne, Victoria, Australia (Email: Ian.Hogan@THINKronicity.com.au)

6 ASOR BULLETIN, Volume 23 Number 3, September 2004

Appendix I: Example Rules and Sequence

ASOR BULLETIN, Volume 24 Number 2, June 2004 7

The figure below illustrates the sequencing algorithm for a single vehicle type. The
arrows show the first 5 steps in the sequencing operation. At the bottom of the branch nodes
is a table showing the active branch for the sequencing step.

Table 1 on the next page shows the generated sequence. As can be observed, no swaps
are required to achieve the desired goals – alternating sedans and wagons, two automatic
and one manual transmission per group of three vehicles and spacing out the non-GXP
grades.

Figure 4: Sequencing Example

The Python program used to generate this sequence is shown in Appendix II. Details on
the Python language can be found at http://www.python.org/. The distribution used was the
ActivePython 2.2.3 (Build 227) from ActiveState (http://www.activestate.com/).

http://www.python.org/
http://www.activestate.com/

Table 1 : Generated Production Sequence

Sequence Vehicle ID Type

1 006028 SA

2 003148 WM

3 006705 SA

4 001351 WAG

5 001678 SM

6 001916 WAG

7 005329 SA

8 009055 WM

9 006260 SA

10 003938 WAE

11 009199 SM

12 004678 WAG

13 001762 SA

14 005879 WM

15 009249 SA

16 002702 WAG

17 000770 SM

18 008888 WAE

19 003163 SA

20 000633 WM

21 002236 SA

22 005650 WAG

23 007382 SM

24 002887 WAG

25 007762 SA

26 009103 WM

27 002375 SA

28 000950 WAE

29 007393 SM

30 006508 WAG

8 ASOR BULLETIN, Volume 24 Number 2, June 2004

Appendix II: Python Sequencing Simulator

ASOR BULLETIN, Volume 24 Number 2, June 2004 9

#===
Simple production line sequencer simulator

Written by Ian Hogan, April 2004.

(C) 2004, THINKronicity Pty Ltd.
#===

The global NodeList contains the list of nodes in the rule tree
as a dictionary, where the key is the node id and the value is
the node object.
gNodeList = dict()

#===
Define class to encapsulate rule-node behaviour
#===
class qNode:
 """ Class qNode encapsulates rule-node behaviour

 Attribute Meaning
 ----------- --
 id Used to construct the child node id's. Node id's are
 a sequence of digits, one digit for each level in the
 tree. Hence the current node's parent is just the
 current node's id with the last digit removed, and the
 id for a child node is the current node's id with the
 branch number appended.
 Vehicles The number of the vehicles in leaf nodes below this node,
 if this is a branch node, or the number of vehicles in
 this node if it is a leaf node.
 VehType If vehType is None, then it is a branch node
 and BranchFreq indicates the number of branches
 and their frequencies, otherwise it is a leaf node for
 that type of vehicle.
 BranchFreq A list of frequencies for the branches.
 CurBranch The current active branch from this node, if it is a
 branch node.
 CurBranchCount The number of consecutive times the current active branch
 has been used.
 UnallocatedCount The number of un-allocated vehicles below this branch node
 or in this leaf node.
 ----------- --
 """

 def __init__(self, id, Vehicles, VehType=None, BranchFreq=None):
 """ Initialise the node object and add it to the global nodelist
 """
 # save data passed in
 self.id = id
 self.Vehicles = Vehicles
 self.VehType = VehType
 self.BranchFreq = BranchFreq
 # Initialise status
 self.CurBranch = 0
 self.CurBranchCount = 0
 self.UnallocatedCount = Vehicles

 # Add to nodelist
 gNodeList[id] = self

 def BranchCount(self):
 """ Get a node's number of branches
 """
 if self.BranchFreq is None:
 return 0
 else:
 return len(self.BranchFreq)

 def ParentId(self):
 """ Get a node's parent's Id
 """

 return self.id[0:len(self.id)-1]

 def ChildId(self, Branch):
 """ Get a node's child for a specified branch
 """
 return self.id+str(Branch)

 def Parent(self):
 """ Get a node's parent
 """
 if gNodeList.has_key(self.ParentId()):
 return gNodeList[self.ParentId()]
 else:
 return None

 def Child(self, Branch):
 """ Get a node's child for a specified branch
 """
 if gNodeList.has_key(self.ChildId(Branch)):
 return gNodeList[self.ChildId(Branch)]
 else:
 return None

 def IsLeaf(self):
 """ See if this is a leaf node
 """
 return self.BranchFreq is None

 def IsRoot(self):
 """ See if this node is the root of the tree
 """
 return (self.Parent() is None)

 def DropUnallocatedCount(self):
 """ Reduce the unallocated count for the current node and up the tree
 """
 # Recursively step through nodes from current to root,
 # decrementing the unallocated count for each.
 self.UnallocatedCount -= 1
 if not self.IsRoot():
 self.Parent().DropUnallocatedCount()

 def GetNextActiveBranch(self):
 """ Get the next active branch from this node
 """
 # See if current branch consecutive traversal limit has been reached
 if self.CurBranchCount < self.BranchFreq[self.CurBranch]:
 # Limit not reached - count traversal and still use current branch
 self.CurBranchCount += 1
 else:
 # Limit reached - get next branch and count traversal
 self.CurBranch = (self.CurBranch + 1) % self.BranchCount()
 self.CurBranchCount = 1
 # Return child node for the active branch.
 return self.Child(self.CurBranch)

 def GetNextVehicle(self):
 """ Get the next vehicle for a node
 """
 # Any vehicles left in this node?
 if self.UnallocatedCount == 0:
 # No vehicles left - go back to parent
 return self.Parent().GetNextVehicle()
 elif self.IsLeaf():
 # Leaf node - drop count and return vehicle type.
 self.DropUnallocatedCount()
 return self.VehType
 else:
 # Branch node - get vehicle from next active branch.
 return self.GetNextActiveBranch().GetNextVehicle()

#===

10 ASOR BULLETIN, Volume 24 Number 2, June 2004

Appendix II: Python Sequencing Simulator

Main code
#===

Create nodes
Node0 = qNode(id='0', Vehicles = 30, VehType = None, BranchFreq = (1,1))
Node00 = qNode(id='00', Vehicles = 15, VehType = 'S', BranchFreq = (2,1))
Node01 = qNode(id='01', Vehicles = 15, VehType = 'W', BranchFreq = (1,2))
Node000 = qNode(id='000', Vehicles = 10, VehType = 'SA', BranchFreq = None)
Node001 = qNode(id='001', Vehicles = 5, VehType = 'SM', BranchFreq = None)
Node010 = qNode(id='010', Vehicles = 5, VehType = 'WM', BranchFreq = None)
Node011 = qNode(id='011', Vehicles = 10, VehType = 'WA', BranchFreq = (2,1))
Node0110 = qNode(id='0110', Vehicles = 7, VehType = 'WAG', BranchFreq = None)
Node0111 = qNode(id='0111', Vehicles = 3, VehType = 'WAE', BranchFreq = None)

Sequence vehicles
iSeq = 1
while Node0.UnallocatedCount > 0 and iSeq <= 30:
 print iSeq, Node0.GetNextVehicle()
 iSeq += 1

ASOR BULLETIN, Volume 23 Number 3, September 2004
11

	Abstract
	The Problem
	The Algorithm
	Implementation Issues
	The Acid Test
	Related Work
	Conclusion

