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Editorial 

 
 
In this issue, N. H. Shah and A. R. Patel have contributed a technical paper on Optimal Pricing 
and Ordering Policy for Stock-Dependent Demand under Delay in Payments. In addition, 
M.Valliathal and  R. Uthayakumar have contributed a paper on A Deterministic Two-Warehouse 
Inventory Model for Deteriorating Items with Stock-Level-ependent Demand Rate. T. P. 
Hutchinson has prepared a technical note on Interpretation of Data Showing Something has One 
Effect Sometimes and a Different Effect in other Circumstances: Theories of Interaction of 
Factors. We are delighted to be publishing them here for the Bulletin readers.  
 
I am pleased to inform you that the electronic version of ASOR Bulletin is now available at the 
ASOR national web site: http://www.asor.org.au/. Currently, the electronic version is prepared 
only as one PDF. We like to thank our web-master Dr Andy Wong for his hard work in 
redesigning and smoothly managing our national web site. Your comments on the new electronic 
version, as well as ASOR national web site, is welcome.  
 
ASOR Bulletin is the only national publication of ASOR. I would like to request all ASOR 
members, ASOR Bulletin readers and OR organizations in the country to contribute to the ASOR 
Bulletin. The editorial policy is available either from the Bulletin web site or from the inside back 
cover of the Bulletin. The detailed instructions for preparing the manuscripts is available in the 
URL: http://www.asor.org.au/. 
 
Address for sending contributions to the ASOR Bulletin: 
 
 

A/Prof. Ruhul A Sarker 
Editor, ASOR Bulletin 
School of Engineering & IT (SEIT)  
UNSW@ADFA 
Northcott Drive, Canberra 2600 
Australia 
Email: r.sarker@adfa.edu.au 
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Abstract: 
In this paper, optimal pricing and ordering policy for inventory model for a retailer is 
developed when the demand is stock dependent and the supplier offers a trade credit. An 
algorithm for a retailer is suggested to maximize the total profit per unit time. The intuition 
that the cycle time and order quantity will increase under trade credit is contradicted. 
Numerical example is given to illustrate the proposed model. Sensitivity analysis for stock 
dependent parameter is carried out. 
 
Key – words: Pricing, inventory, stock dependent demand, delay in payments. 
 
 
1. Introduction:        
In global market, supplier uses trade credit as a promotion tool to increase his sale and attract 
new retailers. Brigham (1995) gave financial management term “net credit”. “net credit” 
means a supplier offers the retailer a time (say) 30 days, to settle the total amount against the 
purchases made. However, if the payment is not settled within the allowable trade credit 
period, the interest is charged on the unsold stock under the agreed terms and conditions. 
Therefore, a retailer can earn the interest on the generated revenue during permissible delay 
period and delay the payment up to the last day of the delay period offered by the supplier. 
The permissible trade credit reduces the retailer’s holding cost because it reduces the amount 
of capital investment in stock for the duration of the offered trade credit. However, offering 
trade credit increases default risk to the supplier. 
 
Goyal (1985) formulated an economic order quantity model under permissible delay in 
payment. He calculated interest earned on the purchase cost and concluded that the cycle time 
and ordering quantity increases marginally under the permissible delay in payments. Dave 
(1985) rectified Goyal’s model by assuming that the selling price is necessarily higher than 
the purchase price. Shah (1993a, 1993b), Aggarwal and Jaggi (1995) then extended Goyal’s 
model for deteriorating items. Jamal et al. (1997) generalized model to allow for shortages 
and deterioration. Hwang and Shinn (1997) derived optimal pricing and ordering policies for 
the retailer under the condition of trade credit. Liao et al. (2000) formulated an inventory 
model for stock dependent demand when delay in payments is permissible. Chang and Dye 
(2001) extended the model of Jamal et al. (1997) for time dependent deterioration. They 
assumed that the black logging rate is inversely proportional to the waiting time. Almost all 
above stated articles ignore the difference between the selling price and purchase cost. Jamal 
et al. (2000) and Sarker et al. (2000) computed interest earned on the selling price and 
concluded that the retailer should settle his account relatively sooner as the unit selling price 
increases relative to the unit purchase cost. Teng (2002) proved that it is beneficial for a well-
established retailer to put order of smaller size and take the benefits of the permissible delay 
more frequently. Chang et al. (2003) determined an economic order quantity model for 
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deteriorating items in which the supplier offers a trade credit to the retailer if the order 
quantity is greater than or equal to a pre-specified quantity. Teng et al. (2005) developed 
retailer’s optimal ordering and pricing policy for a deteriorating inventory when demand is 
deterministic and constant.  
         
In this paper, an attempt is made to develop a model from a retailer’s point of view when 
supplier offers a permissible delay in payments. Demand is considered to be dependent on the 
stock displayed and selling price. Here, the retailer has to decide the unit selling price and the 
quantity to be replenished. In order to solve this problem, we use backward induction. 
Consequently, we first derive the optimal lot size for a given price and then determine the 
optimal sale price that maximizes retailer’s total profit per unit time. The theoretical result 
suggests that the cycle time and order quantity decreases under the permissible trade credit. 
Computationally, it is established that a higher value of allowable trade credit lowers unit 
selling price and increases the profit. 
 
 2. Assumptions and Notations:  
The proposed concept is formulated using following assumptions:  

1. The inventory system under consideration deals with a single item. 
2. Replenishment rate is infinite. 
3. Shortages are not allowed. 
4. The lead-time is zero or negligible. 
5. The demand for the item is decreasing function of the selling price and increasing 

function of stock-dependent parameter. Consider ( )( ) ( )( ), 1 PR P I t I t ηα β −= +  

where α constant demand,  β  denotes rate of change of demand due to displayed 
stock is and 1η >  is constant price elasticity. 0 ,α α β> >>  and 0 1β≤ < . 

6. The supplier offers the retailer a credit period of (say) M days. During this time, the 
retailer deposits generated revenue in an interest bearing account. At the end of this 
period, the retailer pays off all units sold, keeping the rest for day-to-day expenses, 
and starts paying for the interest charges on the unsold stock.      

 
In addition, the following notations are used throughout this paper: 
h  the unit inventory holding cost per year excluding the interest charges. 
P  the selling price per unit (a decision variable). 
C      the unit purchase cost with C P< . 
A    the ordering cost per order. 
Ic           the interest charged per $ in stock per year by the supplier. 
Ie           the interest earned per $ per annum by the retailer. 
M           the offered trade credit by the supplier to the retailer to settle the account against the 

purchases made. 
Q     the order quantity (a decision variable). 
T      the cycle time (a decision variable). 
( )I t       the inventory level at any instant of time t, 0 .t T≤ ≤  

( )( ),R P I t  the demand given by ( )( ) ( )( ), 1R P I t I t P ηα β −= +  where 0α > is constant 

demand 0 1β≤ <  denotes rate of change of demand due to display of the stock. 
1η >  price elasticity. 

( ),Z P T   the total annual profit per unit time. 
 
The total profit per unit time comprises of : (a) the sales revenue; (SR), minus (b) cost of 
placing orders; (OC), (c) cost of purchasing; (PC), (d) inventory holding cost excluding 
interest charges; (IHC), (e) cost of interest payable for unsold items after the permissible 
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delay period, M (this occurs only when M < T ); (IC), plus (f) interest earned from the 
generated revenue during the permissible trade credit; (IE). 
 
3. Mathematical Model: 
The inventory level I (t) depletes due to stock-dependent demand and selling price of the unit. 
The rate of change of inventory is governed by the following differential equation: 

                  ( ) ( )( ), , 0
dI t

R P I t t T
dt

= − ≤ ≤                                                                      (1) 

with the initial condition I (0) = Q and the boundary condition I(T) = 0. Consequently, the 
solution of (1) is given by 
                ( ) ( )1 1 ,P T tI t e o t T

ηαβ

β
− −⎡ ⎤= − ≤ ≤

⎣ ⎦
                                                               (2) 

and the order quantity is  

                 1 1P TQ e
ηαβ

β
−⎡ ⎤= −⎣ ⎦

                                                                                       (3) 

         Next, we compute the different components of the total annual profit per unit time. 
(a) Sales revenue;  ( )( ) 1,SR PR P I T P ηα − += =                                                         (4) 

(b) Cost of placing an order; 
AOC
T

=                                                                             (5) 

(c) Cost of purchasing; 1P TCQ CPC eTT
ηαβ

β
−⎡ ⎤

⎢ ⎥
⎣ ⎦

= = −                                                       (6) 

(d) Inventory holding cost excluding interest charges;   

             ( )
0

ThIHC I t dt
T

= ∫ 1P Th e P T
P T

ηαβ η
η αβ

αβ
− −

−
⎡ ⎤= − −⎣ ⎦

                                    (7) 
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Fig. 1 The inventory - time graph 
 



___________________________________________________________________________________
ASOR Bulletin, Volume 28, Number 3, September 2009                                                                                         5 

 
Regarding interest charged and earned (i.e. costs of (e) and (f)) we have following two cases 
depending on the lengths of T and M. These two cases are graphed in Fig. 1. 
 
Case: 1.     T M≤  
In this case, the retailer sells ( )( ),R P I T T  units by the end of the cycle time and has 

( )( ),CR P I T T  in his account to pay the supplier in full by the end of the credit period M. 
Hence, the interest earned per unit time is 

     ( )( ) ( )( ) ( )
0

, ,1
TPIeIE R P I t t dt R P I T T M T

T
⎡ ⎤= + −∫⎢ ⎥⎣ ⎦

 

          ( )12
P TPIe e P T PI P M Te

P T

ηαβ η ηαβ αηαβ

− − −⎡ ⎤= − − + −− ⎣ ⎦
                                       (8) 

        Therefore, the retailer’s total profit per unit time; ( ),1Z P T  is 

         ( ),1 1Z P T SR PC OC IHC IE= − − − +                                                                   (9) 

 
Case: 2.     M T≤  
Using assumption (3), the buyer sells ( )( ),R P I M M  - units by the end of the allowable trade 

credit M and has ( )( ),CR P I M M  in his account to pay the supplier. The unsold items in 

stock are charged at interest rate Ic  by the supplier at the beginning of time T.  
        Hence, interest charged per unit time is  

         ( ) ( ) ( )22 1
T

M

P T MCI CIc cIC I t dt P T M
T P T

e ηαβ η
η αβ

αβ
− − −

−
⎡ ⎤
⎢ ⎥
⎣ ⎦

= = − − −∫           (10) 

 
During the credit period, the retailer sells items and deposites the generated revenue into an 
account bearing account at the interest rate Ie  per dollar per year.  
 
Therefore, the interest earned per unit time is  

       ( )( )
0

2 ,
MPIeIE R P I t t dt

T
= ∫  

             1
P T

P M P MPI ee e P M e
P T

ηαβ η ηαβ αβηαβηαβ

−
− −− −−⎡ ⎤= − −− ⎣ ⎦                                     (11) 

 
Hence, the total profit; ( ),2Z P T per time unit is 

        ( ),2 2 2Z P T SR PC OC IHC IC IE= − − − − +                                                     (12) 

 
Hence, the total profit; ( ),Z P T per time unit is 

        ( ) ( )
( )

1

2

, ;
,

, ;
Z P T T M

Z P T
Z P T M T

⎧
⎪
⎨
⎪⎩

≤
=

≤
 

 
One can easily check that ( ) ( )1 2, ,Z P M Z P M= . ( )1 ,Z P T  is continuous function of  

T either in ( )0 , M  or ( ),M ∞  but not in both. 
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4. Determination of the optimal cycle time for any given price: 
For low stock-dependent parameter, we have exponential series as 

                   
( )2

1
2

T T
Teβ β

β= + +                                                                                    (13) 

 
Hence, the total profit per time unit will be given by  

( ) ( )11 , ,Z P T AZ P T=  

                 ( )
2 2

2 2 2e
C P T A h P T TP C P PI P M

T

η η
η ηα β αα α

− −
− − ⎛ ⎞= − − − − + −⎜ ⎟

⎝ ⎠
        (14) 

and 
( ) ( )22 , ,Z P T AZ P T=  

                 ( ) ( )2 2

2 2 2
c eCI PI P TC P T A h P TP C P

T

ηη η
η αα β αα

−− −
− −

= − − − − −  

                                                                 
( ) 2

2
c e

c

CI PI P M
CI P M

T

η
η α

α
−

− −
+ −                (15) 

 
Then, the approximation of total profit; ( ),AZ P T per time unit is 

( ) ( )
( )

1

2

, ;
,

, ;
AZ P T T M

AZ P T
AZ P T M T

⎧
⎪
⎨
⎪⎩

≤
=

≤
 

 
Note that the approximation is useful to obtain the closed – form solution for the optimal 
cycle time; T. By taking the first – order and second – order derivative of ( ),kAZ P T , for k 
= 1 and 2 with respect to T, we obtain  

( )1
2

,
e

AZ P T A h C P PI P
T T

η ηαβ α− −∂
⎡ ⎤= − + +⎣ ⎦∂

                                                                  

(16) 
( ) ( )2

2
2, 1

2c e cM
AZ P T PA CI PI P C P h CI

T T

η
η ηαα αβ

−
− −∂ ⎡ ⎤ ⎡ ⎤= + − − + +⎣ ⎦⎣ ⎦∂

                    

(17) 
( )2

1
2 3

, 2 0
AZ P T A

T T
∂

= − <
∂

                                                                                               (18) 

( ) ( )
2

2
2 3

2, 2
c e M

AZ P T
A CI PI P

T T
ηα −∂ ⎡ ⎤= − + −⎣ ⎦∂

                                                         (19) 

 
The second order conditions given in eq. (18) suggests that for fixed P, ( )1 ,AZ P T  is 

concave function of T. Thus, there exists a unique value of  1T T=  which is given by  

             1
1

2AT
g P ηα −=     ;                                                                                                   (20) 

where  
                1g h PI C Pe

ηαβ −= + +                                                                                       (21) 
To ensure 1T M≤ , we substitute (20) in the inequality 1T M≤ , this holds if and only if 

2
12A M g P ηα −≤                                                                                                                  (22) 
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knowing 1T , the optimal purchase quantity 1Q  is given by 

          1
1 1

2A p A PQ
g g

η ηα βα− −

= +                                                                               (23) 

Using (20), eq. (14) becomes function of P only. 
 
Eq. (19) suggests that for fixed P, ( )2 ,AZ P T  is a concave function of T. Thus there exists a 

unique value of 2T T= , given by  

          2
2

2LT
g P ηα −=                                                                                                           (24) 

where 

               ( ) 21
2 c eL A CI PI P Mηα −= + −                                                                            (25) 

               2 cg h CI C P ηαβ −= + +                                                                                        (26) 
 
Substituting (24) in inequality 2T M≥  gives ( ) 22 eA h PI C P P Mη ηαβ α− −≥ + +          (27) 

and optimal procurement quantity 2Q for case: 2 is given by  

           2
2 2

2L p L PQ
g g

η ηα βα− −

= +                                                                               (28) 

 
Substituting (24) into eq. (15) reduces profit function to be only in terms of P. 
        When 0β = , the developed model reduces to that of Teng et al. (2005). 
        We have next theorem using (22) and (27). 
 
Theorem: 1. For the low stock – dependent demand rate, we have  

(1) If ( ) 22 eA h PI C P P Mη ηαβ α− −< + +  then *
1T T=  

(2) If ( ) 22 eA h PI C P P Mη ηαβ α− −> + +  then *
2T T=  

(3) If ( ) 22 eA h PI C P P Mη ηαβ α− −= + +  then *T M=  

 
Proof:  It follows from (22) and (27) 
Solving ( )0 0 0

22 eA h P I C P P Mη ηαβ α− −= + +                                                                    (29) 

 
We obtain value of 0P . Section 4 suggests that now approximated total profit per unit time is a 
function of P only. 

 i.e.  ( ) ( )
( )

0

0

1

2

;
;

AZ P P P
AZ P

AZ P P P

⎧
⎪
⎨
⎪⎩

≤
=

≥
                                                                    (30) 

 
To obtain the optimal price, differentiate (30) with respect to P and set it equal to zero. 
   
 
5. An algorithm: 
The steps to determine an optimal solution for the developed model are as follows: 
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Step 1: Determine 0P  by solving (29). 

Step 2: Find 1P  by setting
( )1 0

AZ P
P

∂
=

∂
. If 1 0P P≤  then Case: 1 is optimal otherwise go 

to step 3. 

Step 3: Find 2P  by setting
( )2 0

AZ P
P

∂
=

∂
. 

Step 4: Find corresponding cycle time and total profit per time unit. 
 
 
6. Numerical Example: 
Consider, the following parametric values [ ], , , , , ,A C h I Ic eα η  = 

[ ]10000, 10, 4.5, 0.5, 0.09, 0.06, 1.5  in proper units. Using the Algorithm, 
we obtain values of decision variables and objective function for different values of M. The 
results are exhibited in Table 1 and Table 2 for 0.05 , 0.1β = 0 respectively. The following 
observations are made based on Table 1 and Table 2. 
 

1. The selling price increases with increase in the demand rate β and decreases total 
profit per unit time of the retailer. 

2. Increase in delay period M increases total profit per time unit but decreases values of 
optinal sale price and cycle time. 

3. If *M T≤ , then a higher value M lowers optimum procurement quantity.  
4. If *T M≤ , then increase in M increases optimum purchase units. 

 
Table 1: Variations in delay period when 0.05β =  

M(days) P0 P T Q(T) AZ 
5 5.96537 P2=19.84566 T2=0.08188 11.40506 1491.8495 

10 9.49560 P2=19.82114 T2=0.08162 11.38852 1492.4804 
15 12.48589 P2=19.79135 T2=0.08127 11.36073 1493.1130 
20 15.18748 P2=19.75629 T2=0.08082 11.32163 1493.7453 
25 17.70588 P2=19.71594 T2=0.08027 11.27116 1494.3744 
30 20.09879 P1=19.67598 T1=0.07973 11.22126 1498.0342 
40 24.64258 P1=19.64419 T1=0.07954 11.22271 1501.7413 
50 29.00183 P1=19.61250 T1=0.07936 11.22415 1505.4515 
60 33.28582 P1=19.58092 T1=0.07918 11.22558 1509.1646 
70 37.57309 P1=19.54944 T1=0.07899 11.22701 1512.8807 

 
Table 2: Variations in delay period when 0.1β = 0 

M(days) P0 P T Q(T) AZ 
5 7.51289 P2=22.39073 T2=0.07028 8.76738 1402.6151 

10 11.95294 P2=22.45154 T2=0.07006 8.75395 1403.1398 
15 15.70798 P2=22.41528 T2=0.06974 8.73144 1430.6663 
20 19.09428 P2=22.37112 T2=0.06934 8.69982 1404.1918 
25 22.24448 P2=22.31904 T2=0.06883 8.65904 1404.7130 
30 25.23090 P1=22.30005 T1=0.06872 8.65834 1408.7301 
40 30.87999 P1=22.26398 T1=0.06858 8.65914 1412.2123 
50 36.26805 P1=22.22802 T1=0.06841 8.65994 1415.6974 
60 41.52765 P1=22.19218 T1=0.06826 8.66073 1419.1853 
70 46.75135 P1=22.15646 T1=0.06810 8.661518 1422.6760 
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7. Conclusions: 
In this study, optimal pricing and ordering model for a retailer is developed when demand is 
stock – dependent and the supplier offers a trade credit period using series expansion, closed – 
form optimal solution is established. The analytic results are obtained to decide retailer’s 
optimal policy. Numerical example reveals that a higher value of the permissible delay period 
increases the total profit of the retailer but lowers selling price and cycle time. 
 
The model can be generalized to allow for shortages, discounts, time dependent deterioration.   
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Abstract: 
In this paper we discuss a deterministic two- warehouse inventory model for deteriorating 
items with stock-dependent demand rate. Shortages are not allowed. We study the effects of 
deterioration on the optimal cycle length, optimal order quantity,optimal quantity per 
shipment, the number of transporting items from RW to OW and the total profit of a 
deterministic two- warehouse inventory model. Necessary and sufficiency conditions for how 
much to order the optimum order quantity are given. Theoretical results are given to 
strengthen the model. Sensitivity analysis of the optimal solution with respect to the major 
parameter is carried out. Numerical examples are presented to demonstrate the developed 
model. 
 
Keywords:   Inventory, Deterministic model, Two-warehouse system, Deteriorating items.  
 
 
1. Introduction 
The warehouse storage capacity is defined as the amount of storage space needed to 
accommodate the materials to be stored to meet a desired service level which specifies the 
degree of storage space availability. Stock items to be delivered exactly when needed are 
impractical. Therefore, it is important to investigate the influence of warehouse capacity in 
various inventory policy problems. In recent years, various researchers have discussed a two-
warehouse inventory system. This kind of system was first discussed by Hartley in Chap.12 
[11]. Goswami and Chaudhuri [9] proposed an economic order quantity model for items with 
two levels of storage for a linear trend in demand. Sarma [21] studied a deterministic order 
level inventory model for deteriorating items with two storage facilities. Pakkala and Achary 
[18] studied a deterministic inventory model for deteriorating items with two warehouses and 
finite replenishment rate. Zhou [25] developed an optimal EOQ model for deteriorating items 
with two warehouses and time varying demand and Kar et al. [14]   established the 
deterministic inventory model with two levels of storage, a linear trend in demand and a fixed 
time horizon. 
 
Most of the existing inventory models in the literature assume that items can be stored 
indefinitely to meet the future demands. However, certain types of commodities either 
deteriorate or become obsolete in the course of time and hence are unstable. Deterioration 
refers to the damage, spoilage, dryness, vaporization, etc. of the products. Inventory problems 
for deteriorating items have been studied extensively by many researchers from time to time. 
Research in this area started with the work of Whitin [22] who considered fashion goods 
deteriorating at the end of prescribed storage period. Ghare and Schrader [8] established a 
model for exponentially decaying inventories. Covert and Philip [4] studied an EOQ model 
for items with Weibull distribution deterioration. Dave [6]  developed a discrete in time order 
level inventory model deteriorating items, Raafat et al.[19] provided an inventory model for 
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deteriorating items and Heng et al. [12] studied an order level lot size inventory model for 
deteriorating items with finite replenishment rate. 
 
The stock-dependency nature of demand rate is possible for most of the consumable goods. A 
retailer may display each of his items in large quantities to generate greater demand. 
Inventory models for a single deteriorating item with stock-dependent demand rate have been 
studied extensively in the last decade.  Datta and Pal [5] developed a deterministic inventory 
system for deteriorating items with inventory level-dependant demand rate and shortages. 
Goyal and Giri [10] presented a review on inventory model for deteriorating items which 
gives useful information about two warehouse inventory problem. Yang [24] studied a two-
warehouse partial backlogging inventory model for deteriorating items under inflation. Hsieh 
et al. [13] discussed a two- warehouse inventory system with deterioration and shortages 
using net present value. Banerjee and Agrawal [2] proposed a two-warehouse inventory 
model for items with three-parameter Weibull distribution deterioration, shortages and linear 
trend in demand.  Chung et al. [3] developed a two-warehouse inventory model with  
imperfect quality production processes source. Gayen and Pal [7] provided a two ware house 
inventory model for deteriorating items with stock dependent demand rate and holding cost.  
Rong, et al. [20] presented a two warehouse inventory model for a deteriorating item with 
partially/fully backlogged shortage and fuzzy lead time. Recently, researches related to this 
area such as Niu and Xie [17], Kofjac et al. [15], Lee and Hsu [16], Yang [23], Zhou [26]and 
so on. However, a few two warehouse inventory models deal with inventory-level-dependent 
demand pattern, but they do not consider demand rate as a polynomial form of current 
inventory level except Zhou and Yang [27]. 
 
In this paper, we extend Zhou and Yang [27] model for deteriorating items. Here, we discuss 
a two-warehouse inventory model with deteriorating items under stock-level-dependent 
demand rate. The proposed model is suitable for all instantaneous deteriorating items stored in 
the warehouses. This paper is presented as follows. In section 2, the assumptions and 
notations are given. In section 3, we present the mathematical model. In section 4, numerical 
examples are given to illustrate the model. Finally, we conclude the paper. 
 
 
2. Assumptions and notations:  
To develop the mathematical model the following assumptions and notations are being made: 
 
2.1 Assumptions 

• Replenishment is instantaneous with a known, constant lead time. 

• The time horizon of the inventory system is infinite. 

• The demand rate, R(t) is assumed to be dependent on the current inventory level and 
of      polynomial form- that is to say R(t) = βα )(tI , βα , > 0.The advantages of this 
type of demand –rate pattern can be found in Baker and Urban’s paper  [1]. 

• Shortages are not allowed to occur. 

• The time of transporting items from RW to OW is ignored. 

• There is no replenishment or repair of deteriorated units. 

• The rented ware house has unlimited capacity. Each shipment from RW to OW will       

       restore OW  to W units, which means q≤W. 
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• Based on the practical observation, the transportation cost for q units per shipment    
is assumed as  T c (q) = A  for   0< q≤ y   and T c (q) = A + b (q-y)  for   y < q ≤W 

      where y is the maximum number of units which can be shipped under a fixed          
transportation cost  A and b is the variable charge to be paid for every additional unit 
after y. 

 
2.2 Notations 
W   the storage capacity of OW 
T    the length of replenishment cycle 
Q    the replenishment quantity per replenishment  
m    the number of transporting items from RW to OW 
q     the quantity per shipment 
To     the fixed time interval between two successive shipments from RW to OW 
Tc(q)  the transportation cost for q units per shipment from RW to OW 
P'′    the selling price per unit item 
P    the purchasing cost per unit item 
how   the holding cost per unit per unit time in OW 
hRW   the holding cost per unit per unit time in RW and hRW ≥ hOW 
K 1  the fixed replenishment cost per replenishment for a two-warehouse system 
K    the fixed ordering cost per order for a single warehouse system, generally, K 1 ≥  K 

(extra cost may be included for the two-warehouse system due to    transportation) 
I(t) the inventory level at time t, t∈  [0,T] 

R(t)  the demand rate at time t, t∈  [0,T] ( a function of current inventory level in OW) 

θ   the constant deterioration rate where 0 θ≤ < 1 
TP  the total profit per unit time 
 
 
3. Model formulation 
Our problems to be discussed in this paper are: 

• How the decision- maker knows whether or not to rent RW to hold more items under 
the situation defined above. 

• What order lot-size shipment policy from RW to OW the decision- maker should 
make if he needs indeed to rent RW. 

For answering the first question, we first simplify depict the single warehouse system. 
 
3.1 Single warehouse model 
The inventory system with a single warehouse can be stated as follows: 
 
The inventory level of the system is Q (i.e. the order quantity) at the beginning of each 
replenishment cycle. An inventory level I(t) in the replenishment cycle [0,T] in OW satisfies 
the following differential equation: 

TttItI
dt

tdI
≤≤−−= 0;)()()( βαθ                                    (1) 

 
The solution of the differential equation (1) is  
I(t) = Q – t( βαθ QQ + )                                               0 Tt ≤≤                                              (2) 

and total profit is = 
T
1

{sales revenue- setup cost-holding cost-deterioration cost}               (3)  

Holding cost HC    = h OW   ∫
T

dttI
0

)(     
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                              =h OW ( )⎥
⎦

⎤
⎢
⎣

⎡
+− βαθ QQTQT

2

2                                                 (4) 

Setup cost             = K                                                                                                              (5) 

Deterioration cost   = P ∫
T

dttI
0

)(θ  

                               = Pθ  ( )⎥
⎦

⎤
⎢
⎣

⎡
+− βαθ QQTQT

2

2
                                                                (6) 

Therefore, total profit of single warehouse system is  

                   TP OW = ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+−+−−− βαθθ QQTQTKQPP

T 2
p) h('1 2

OW
                   (7) 

I(T) = 0 implies T = ( )1

1
−+ βαθ Q

                                                                                           (8) 

Using (8) equation (7) becomes, 

TP OW = ( )[ ] ( )( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+
−+−+−−

−−
− β

β
β αθαθθαθ QQQQQKQPP

2
P) h('

11

OW
1    (9) 

The necessary conditions for TP OW (Q) to be maximum are: 

• 0
dQ

 TP
0

dQ
 TP

2
OW

2
OW <=

d
and

d
    

           0
dQ

 TP OW =
d

 implies: 

( ) ( ) ( ){ } ( )( )−−++−−− −− PPQKQPPQ ''1 12 ββ αθβα P) h( OW θ+  

( ) ( )
( ) ( )( )( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+−−
−+

+
−

−−−
−

−−
β

ββ
β

β

αθαθβααβθαθ QQQQQQ
2

)1(
2

1
212

)1(
11

  (10)  

 
Solving (10) we get Q * . When Q * < W, we use single warehouse inventory system. 
Otherwise, we use two warehouse inventory systems.                         
 
In the next section 3.2, we will show the mathematical formulation of the two-warehouse 
system. 
 
3.2 Two-warehouse inventory model formulation 
At the beginning of each replenishment cycle, the system receives Q units out of which W 
units are kept in OW and the remaining parts are kept in RW. Items in OW are used to satisfy 
customers’ demand until the inventory level in OW drops to (W-q) units. At this moment, q 
units from rented warehouse are shipped to OW to restore the stock to the original level W. 
Then the process is repeated until m shipments are completed. After the m th  shipment, no 
units are left in RW. The remaining W units in OW are used up to the end of the 
replenishment cycle. The order quantity for each cycle is W+ m q =Q and the inventory level 
I (t) in the i th shipment cycle in OW satisfies the following differential equation: 
 

niiTtTitRtI
dt

tdI ,...2,1,)1(;)()()(
00 =≤≤−−−= θ                (11)  

With the boundary condition I(i-1)T 0  =W, 



___________________________________________________________________________________
14                                                                                         ASOR Bulletin, Volume 28, Number 3, September 2009 

 

 
 

Solution of the differential equation (1) is 

    I (t) = W- ( βαθ WW + ) (t-(i-1)T 0 );  niiTtTi ,...2,1,)1( 00 =≤≤−                              (12) 

Thus the inventory level in OW at the end of the shipment of the i th shipment cycle becomes 

I (i T 0 ) = W- ( βαθ WW + ) T 0 ;                                                                                          (13) 

And the amount of items transported from RW to OW in each shipment cycle is  

       q = W – I (i T 0 ) = ( βαθ WW + )T 0                                                                               (14)  

      T 0 = ( βαθ WW + ) 1−                                                                                                       (15) 

This indicates that the shipment cycle length T 0 depends on the variable q. 

The holding cost of items in OW in the shipment period is  

               HC = h OW ∫
−

0

0)1(

)(
iT

Ti

dttI  

                     = h OW T 0 (W- ( βαθ WW + )
2

 T0 )                                                                   (16) 

The inventory level I(t) in OW in the interval [m T 0 ,T] is given by  

               I(t) = W-( βαθ WW + )(t-m T0 );      m T 0 Tt ≤≤                                                (17) 
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              I(T) = 0, (7) implies T= m T 0 + ( )1

1
−+ βαθ W

                                                         (18) 

The holding cost of items in the interval [m T0, T] in OW is  

( ) ( )[ ][ ]∫∫ −+−=
T

mT
W

T

mT
OW dtmTtWWWhdttIh

00

00
βαθ  

                       = h W0
( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

2
mT-T)WW (-) mT-W(T

2
0

0
βαθ                                    (19) 

So the holding cost of the item in OW is given by 

HC OW = ( )
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+

2
mT-T)WW (-) mT-W(T h 

+ ) 
2
T) WW( -(W Th

2
0

0ow

0
0ow

β

β

αθ

αθ

                                          (20)  

The holding cost of the items in RW is  

HC RW    =    h RW   [ ]0000 2...)1( qTqTqTmmqT +++−+       

             =     h RW  q m (m+1)
2
0T

                                                                                            (21) 

Therefore, the average total profit of the system can be expressed as  

TP = 
T
1

 ( )  -(q) T11' c1 m
T

K
T

QPP −−−  
T
1

h OW  T 0 (W- ( βαθ WW + )
2

 T0 ) -  

         
T
1

h W0
( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

2
mT-T)WW (-) mT-W(T

2
0

0
βαθ  - 

T
1

h RW q m(m+1)
2
0T

           (22)                                 

The average total profit function depends only on the discrete variable m and a continuous 

variable q (denoted by TP (m, q)). Now our objective is to find the optimal values of m and q 

in order to keep TP (m, q) maximum. The average total profit is =(1/T){sales revenue- setup 

cost-holding cost in own warehouse- holding cost in the rented warehouse}                           

 

Therefore, the average total profit function can be written as follows: 

TP 1  (m, q) =      
T
1

 ( )  -A11' 1 m
T

K
T

QPP −−−  
T
1

h OW T 0 (W- ( βαθ WW + )
2

 T0 ) -  

                     
T
1

h W0
( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

2
mT-T

)WW (-) mT-W(T
2

0
0

βαθ  

                      - 
T
1

h RW q m(m+1)
2
0T

   for   0< q≤ y                                                              (23) 
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TP 2  (m, q) = 
T
1

 ( )  -A11' 1 m
T

K
T

QPP −−−
T
1

m b (q-y)- 
T
1

h OW T 0 (W- 

( βαθ WW + )
2

 T0 ) - 
T
1

h W0
( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
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⎝

⎛
+

2
mT-T)WW (-) mT-W(T

2
0

0
βαθ  - 

T
1

h RW q 

m(m+1)
2
0T

                 

                                                                        for   y< q≤W                                                 (24) 
 
In order to find the optimum solution we use the following necessary and sufficiency 
conditions. 
 
The necessary conditions for TP RW (Q) to be maximum are: 

•   0
dQ

 TP
0

dQ
 TP

2
RW1

2
RW1 <=

d
and

d
   and 

•   0
dQ

 TP
0

dQ
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2
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d
 

0
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 TP RW1 =
d

 and using the equations W+ m q = Q ,(5) we have  
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Our goal is to maximize the total profit given in equations (23) and (24), for that we study the 
following results. Summarizing the above results, we can now establish the following solution 
procedure to obtain the optimal solution of our problem. 
  
3.3 Solution Procedure 
The following solution procedure can be shown for the decision maker to determine the 
optimum quantity per shipment and the optimal profit when the number of transporting items 
from RW to OW is fixed. 
 
I. To find q*, TP*:  
Step 1:     Fix m, 
Step 2:     Using (15), find q (Use Matlab). 
Step 3:     If 0 yq ≤≤ , find TP1(q), otherwise find TP1(y) 
Step 4:     Using (16), find q1. 
Step 5:     If y wq ≤< , find TP2(q), otherwise find TP2 (y) 
Step 6:    RW

*TP = maximum{ }RW2RW1  TP, TP   
 
The following solution procedure can be shown for the decision maker to determine the 
optimal values of the number of transporting items from RW to OW, the optimum quantity 
per shipment when m is a variable, optimal order quantity and the optimal replenishment 
cycle for a two- warehouse system. 
 
II. To find m* 
For doing this,  
Step 7: Let m = 1, 2, 3, …. respectively, determine the corresponding shipment quantity, 

q*(m), and the average total profit RW TP (m), and compare the total profits of the 
system RW TP (1), RW TP (2), RW TP (3),…… The values of m and q*(m) yielding 
the biggest value of average total profit are taken to be the optimal values of m and q.  

Step 8: Substituting the values of m and q into Q = W+ m Q and T = m T 0 + ( 1−+ βαθ W ) we 
can obtain the optimal replenishment quantity and the optimal cycle of the two-
warehouse system. 

 Step 9:  Solve equation (10) for finding Q* and compute TP*(Q) from equation (9) and T* 
from equation (8) for a single warehouse system. 

 
We can easily find the optimal replenishment policies using the above solution procedure. In 
order to strengthen the proposed model to maximize the profit we derive some theoretical 
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results. 
 
3.4. Theoretical results 
The necessary and sufficiency condition for the decision- maker to decide whether or not to 
rent RW to hold more items under the situation defined above is given in Theorem 1. 
Theorem 2 shows the relevant total profit in the rented warehouse. Theorem 3 identifies the 
maximum total profit of the model.  
 
Theorem 1: The optimal order quantity Q* of the single-warehouse system is no less than W 

if and only if (P'′-P)θ Q ( )β−2 +(P'′-P)αβ +A ( )βα −1 ≥
2
oh

 Q β−3 . 

 
Proof: For notational convenience, let f(Q) = (P'′-P)θ Q ( )β−2 +(P'′-P)αβ +A ( )βα −1  and  

G (Q) = 
2
oh

 Q β−3 (say), then the optimal replenishment quantity Q* for the single warehouse 

system satisfies the relation f(Q*) = G(Q*).If  W≤Q*, f(W)≥G(W), it can be easily seen 

from fig. 3. i.e. (P'′-P)θ Q ( )β−2 +(P'′-P)αβ +A ( )βα −1 ≥
2
oh

 Q β−3 .Conversely , if 

f(W)≥G(W),then W≤Q*,it can be shown in fig.3. 

X-Axis

2q

Fig.3 Diagrams of f(Q) and G(Q)

f(Q)  
G(Q)

 
 
The following theorem is useful to find what order lot-size shipment policy from RW to OW 
the decision- maker should make if he needs indeed to rent RW. 
 

Theorem 2: When (P'′-P)θ Q ( )β−2 +(P'′-P)αβ +A ( )βα −1 ≥
2
oh

 Q β−3 , for any given y, the 

maximum of TP1 with q- range constraint is arrived at q = q* if q* < y; otherwise at q = y, and 
the maximum of TP2 with q- range constraint is arrived at q = q* if q* > y; otherwise at q = y. 

 

Proof: Using (25), we observe that 
( )

0
dQ

0 TP RW1 >
d

 and −∞=
dQ

 TP RW1d
.Hence there must 

be a unique root, q* to equation (25) in the interval (0, W) and 0
dQ

 TP
2

RW1
2

<
d

, q* is the 

global maximum point of TP1 in the interval if  

(P'′-P)θ Q ( )β−2 + (P'′-P)αβ  + A ( )βα −1 ≥
2
oh

 Q β−3 . When considering the q-range 

constraints the maximum of TP1 will still remain at q = q1* if q1*< y. If q1*≥ y, the maximum 
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of TP1 will be at q = y. Using (26), we observe that 
( )

0
dQ

0 TP RW2 >
d

 and 

−∞=
dQ

 TP RW2d
.Hence there must be a unique root, q* to equation (26) in the interval (0, W) 

and 0
dQ

 TP
2

RW2
2

<
d

, q* is the global maximum point of TP2 in the interval if (P'′-

P)θ Q ( )β−2 + (P'′-P)αβ  + A ( )βα −1 ≥
2
oh

 Q β−3 . When considering the q - range 

constraints the maximum of TP2will still remain at q = q2* if q2* > y. Otherwise, maximum of 
TP2 will be at q = y. 

 

The following theorem shows when the decision- maker can obtain much more profit from 
renting RW to order items of more than W units. 

Theorem 3: If (P'-P)θ Q ( )β−2 + (P'-P)αβ  + A ( )βα −1 ≥
2
oh

 Q β−3 , the two-warehouse 

model’s maximal profit is larger than one of the single- warehouse model. 

 
Proof: For a specified m-value, the maximum of the average total profit function, is the larger 
of TP1* and TP2*. The average total profit reaches its maximum at the inner point, 
q = q*, in the interval (0, W) for an arbitrarily given m if 

(P'-P)θ Q ( )β−2 + (P'-P)αβ +A ( )βα −1 ≥
2
oh

 Q β−3 . This indicates that when 

(P'-P)θ Q ( )β−2 + (P'-P)αβ +A ( )βα −1 ≥
2
oh

 Q β−3 , the maximal average total profit 

TPRW(m*,q*) for the inventory system with two warehouses should be greater than 
TPRW(0,0).From (7) and (22), we obtain TPRW(0,0) > TPow(W). Thus,  

TP(m*,q*) > TPow(W) if (P'-P)θ Q ( )β−2 + (P'-P)αβ +A ( )βα −1 ≥
2
oh

 Q β−3 . 

Note: For calculation point of view  

let S = (P'-P)θ Q ( )β−2 +(P'-P)αβ +A ( )βα −1 -
2
oh

 Q β−3 (say). 

 
The purpose of this section is to illustrate the results of our models and demonstrate the 
performance of the solution procedures presented in section 3.3. Numerical examples are 
presented in section 4. The optimal replenishment policies for a two-warehouse model are 
shown in the Table 1 and for a single-warehouse models are shown in Table 2. Sensitivity 
analyses of various parameters are shown in Table 3. 
 
4. Numerical Examples and Sensitivity Analyses 
To illustrate the model let us consider the following examples: 
Let us consider K1= 13, K = 10, P'′ = 20, P = 10, W = 400, β = 0.1, b = 0.2, y = 20, hRW = .8, θ 
β = 0.2, α= 20, A = 4 in appropriate units.  
 
Table 1: Optimal values of the model for two- warehouse system 
 m                  q                         T                  Q                      TP              S 
40             29.8637              7.8276        1794.5474         1182.9223       + 
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Table 2: Optimal values of the model for single- warehouse system 
 Q                                            T                                            TP             S 
444.4446                            3.5362                                     595.2341      + 

 
The numerical values displayed in Table 1 and Table 2 indicates that for two- warehouse 
system, total profit is greater than that of single- warehouse system. Duration of the cycle 
time and the optimum order quantity of the two- warehouse system is greater than that of 
single- warehouse system. So, two-warehouse system under deterioration maximizes the 
profit. 
 
In order to study how various parameters affect the optimal solution of the proposed inventory 
model, sensitivity analysis is performed. Keeping all the other parameters fixed and varying a 
single parameter at a time, for the same set of values we study the results. The results of the 
various parameters against the profit of our model are shown in the following Table.  
 
Table 3: Sensitivity analysis of parameters 
α= 20, β= 0.2, 
θ α        m              q              T                  Q                        TP            S 
 .1         30           29.94         7.03            1498.34              1018.64        + 
 .2         40           29.6           6.49            1783.97              1152.83        + 
 .3         47           29.99         6.02            2009.63              2040.62        +        
 .4         53           29.86         5.59            2182.46              2573.87        + 
 .5         57           29.85         5.19            2301.26              3125.13        + 

     
  α= 20, β= 0.3, 

 αθ       m               q             T                  Q                      TP             S 
.1                                       3.68             892.69             1932.26          –    
.2       43            29.86        5.44           1884.14             2127.14         + 
.3        48           29.59        5.02            2020.08            2674.36         + 

     
 θ = 0.2, β= 0.4, 

  α       m              q              T                  Q                      TP              S 
  6       40           29.8         6.36            1790.72            1576.3            + 
  9       42           29.81       5.69            1852.18            1939.72          + 
12                                     2.41              813.58             2761.57          − 
16                                     2.41              1313.59           4460.62          − 

  
 α = 20, β= 0.1, 

 θ          m            q              T                   Q                      TP            S 
.1         28         29.04        8.47            1413.09              707.00          + 
.2         40         29.86        7.83            1794.55             1182.92         + 
.3         51         29.53        7.27            2106.10             1670.63         + 
.4          59        29.83         6.8              2360.22            2174.03         + 

    
  α=16, β=0.4, 

θ         m            q              T                    Q                    TP             S 
.2                                     2.41            1313.59              4460.62        –      
.5       43         29.47        3.35            1876.22              4612.16        + 
.6       34         29.53        2.72            1603.85              5294.32        +      
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       α =12, β =0.4, 
 θθ     θ       m            q                   T                  Q              TP                 S 
.09                                            4.46           1780.67          2938.53            – 
 .2                                             2.41             813.58          2761.57            – 
 .5            49         29.48            3.95           2054.22          4035.8              + 
 .6            45         29.79            3.46           1940.34          4669.71            +  

            
          α =9, β=0.4, 

θ            m             q                     T                  Q                  TP                   S 
.09                                             4.45             1102.78           1819.16            – 
.2           42          29.81             5.69             1852.18           1939.72            + 
.4           51          29.75             4.85             2117.47           3036.14            + 
.5           52          29.75             4.41             2159.72           3615.23            + 

          
        α= 6, θ  = 0.2 

β            m             q                   T                   Q                      TP                S 
.1          45           29.97             3.81            1948.54          3908.26            + 
.2          45           29.61             9.65            1932.59            974.76            + 
.3          40           29.67             7.64            1786.28          1215.054          + 
.4          40           29.8               6.36            1790.72          1576.3              + 

           
        α = 20, β= .4, θ = 0.2 

P'         m             q                    T                  Q                      TP                 S 
12        11          29.4857         2.1886          924.3430          173.6955         + 
15        22          29.0168         4.0328         1238.3707         620.3606        + 
30                                             5.2246        1766.0095        5519.1613        + 

          
        α= 20, β= 0.4, θ = 0.2 

  P           m           q                     T                 Q                       TP                  S  
  5                                             4.9052        1455.780            3498.2554        –  
  8                                             4.6568        1250.4467          2445.5854        – 
15           22        29.0168         4.0328        1238.3707            620.3606        + 

         
        Ө= 20, β= 0.4, θ  =0.2 

    y            m           q                     T                 Q                         TP            S 
  15                                           2.4078        1904.9934          6470.1727        –     
  50                                           2.4078        1904.9934          6470.1727        –      
  60                                           2.4078        1904.9934          6470.1727        –       

     
        α= 20, β = 0.4, θ = 0.2 

   b             m          q                      T                 Q                         TP            S 
  .1                                           2.4078        1904.9934           6470.1727        –       
  .6                                           2.4078        1904.9934           6470.1727        –        
  .9                                           2.4078        1904.9934           6470.1727        –        

        
      α= 20, β= 0.4, θ  = 0.2 

 hoW           m          q                   T                     Q                        TP           S 
  .7                                         2.2417         1524.9305           5304.140         –      
  .9                                         2.1176         1288.6612           4542.1401       –       
3.0                                         2.656            2653.24              8628.3118       –         
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     α= 20, β= 0.4, θ = 0.2 

 W               m           q                    T                 Q                       TP                S 
 300                                           4.45              1102.78               1819.16           –    
 500                                           2.41              1904.99               6470.17           –    

 
From the above numerical examples we have the following results: 

• Total profit and optimal replenishment quantity are more sensitive to alpha than that 
of beta. 

• Total profit and optimal replenishment quantity are more sensitive to hoW than that of 
hRW. 

• Theta and the optimal replenishment quantity are inversely proportional. 

• Theta and the total profit are directly proportional. 

• Theta and the optimal replenishment duration are inversely proportional. 

• Selling price and the optimal replenishment duration, total profit, optimal 
replenishment quantities are directly proportional. 

• Purchasing cost, the optimal replenishment duration and total profit are inversely 
proportional. 

• Total profit and optimal replenishment quantity are more sensitive to selling price 
than that   of purchasing cost.  

• Compared to other parameters y, b, hRW on the optimal policies are less effective. 

• Compared to the parameters alpha, beta and theta the number of transporting items 
from RW to OW are more sensitive than that of the quantity per shipment. 

• Purchasing cost and the optimal replenishment quantities are directly proportional. 

The purpose of this section is to give some practical application of our model. 
 
4.1 Managerial Implications 

• In order to maximize the total profit the retailer should minimize the holding cost of 
the own warehouse. 

• If the retailer wants to maximize the profit he could control the deterioration rate of 
the stored items. 

• When the retailers control the deterioration rate, it will minimize the number of 
replenishment which gives them maximum profit. 

• Without controlling the deterioration rate the retailers’ durations of the items are less, 
that will increase the transportation cost and number of shipments from rented 
warehouse to own warehouse leads to reduce the profit. 

The above stated managerial implications are also suitable for manufacturers. 
 
5. Conclusions 
In this paper, a two warehouses inventory replenishment model for a single item under 
inventory-dependent demand rate with deterioration is discussed. Deterioration is the main 
problem in inventory models. So this assumption is more realistic.  Zhou and Yang [27] is a 
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special case of our model. Moreover, they did not consider deterioration in their model. The 
necessary and sufficiency condition for the decision- maker to decide whether or not to rent 
RW to hold more items under the situation defined above is given in Theorem 1. Theorem 3 
identifies the maximum total profit of the model. Theorem 2 shows the relevant total profit in 
the rented warehouse. Furthermore, sensitivity analysis not only justifies our theoretical 
results but also provides many reasonable managerial results.  
 
This model can be extended in many ways. We could extend the deterministic model into a 
stochastic model. Finally, we could generalize the model to allow quantity discounts, 
shortages, inflation, etc. 
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Abstract  
A possible explanation of interaction is that quantities derived from the independent variables 
separately add together, but then a curvilinear relationship intervenes between their total and 
the dependent variable observed. It is shown that two different theories of this type are always 
available to explain crossover interaction in a 2x2 table. For example, one theory may say that 
a good outcome occurs when there is an approximate match between values associated with 
the independent variables, and the other theory that a good outcome occurs when the total of 
values associated with the independent variables is either decisively small or large, with 
poorer outcome resulting from intermediate values. 

 
Introduction 
Factorial experimentation involves manipulating two (or more) x's, and observing y at all 
combinations of the values of x1 and x2. If the effect on y of x1 depends upon what x2 is, there 
is said to be an interaction between the x's.  
 
A possible explanation of interaction is that (a) quantities derived from the independent 
variables separately add together, but (b) a curvilinear relationship intervenes between their 
total and the dependent variable observed (see Hutchinson, 2004). This idea is not new. 
Indeed, once it comes to mind, it is a very obvious one. The reason it is worth publicising is 
that it seems not to be widely taught and not to come to researchers’ minds spontaneously. 
 
Interaction was found, for example, in computer simulation of logistics operations by McGee 
et al. (2005). Consider a logistics system that supports operations, and the effects of 
characteristics of the system on the operational availability of equipment. Capability to use 
express service for shipments of parts and capability to repair parts locally will both be good, 
but to some extent they are substitutes for each other, and having both will not be much of an 
improvement on having one of them.  
 
A common pattern in reports of research is for interaction to be found to be statistically 
significant, for the researchers to make a song and dance about the novelty and importance of 
this, but then for no substantive explanation or interpretation to be given.  
 
The next Section discusses the results of McGee et al. (2005). The explanation that will be 
proposed is one of positive but decreasing returns for effort (i.e., the slope of the curvilinear 
relationship is positive but decreasing). Attention then turns to curvilinearity that actually 
reverses in direction, and leads to crossover interaction. Not merely one, but two simple and 
attractive explanations for interaction can always be found, if there are only two factors and 
only two categories of each. They may be relevant to, for example, the idea that that the tone 
of a message needs to match the personality of the audience receiving it, if attitude or 
behaviour change is to occur. Finally, there is a short discussion Section.  



___________________________________________________________________________________
26                                                                                         ASOR Bulletin, Volume 28, Number 3, September 2009 

A Logistics Simulation Example 
McGee et al. (2005) had several factors in their study rather than two. It turns out that the 
specific pattern of the interactions gives some evidence for a theory in which things add 
together but then there is curvilinear dependence on the total. The results in McGee et al. 
indicate that all of the following four factors are good for the measure of performance, 
operational availability: 
 

(A) Waiting until there is a truckload of parts is not necessary,  
(D) Shipments may be made by express service,  
(G) Equipment is reliable, 
(J) There is capability to repair parts locally. 

 
(The capital letters are identifiers as in McGee et al., but in the case of statements (A) and 
(D), positive coding in McGee et al. corresponded to the negation of the statement.)  
 
All of those results of factors considered singly are in accordance with common sense. What 
is of interest is that there are interactions of (D) with each of (A), (G), and (J), and that these 
interactions are such that (D) being true is less important if (A) is true, if (G) is true, and if (J) 
is true. This rather suggests that positive quantities derived from (A), (D), (G), and (J) being 
true combine additively, with operational availability improving less than linearly with the 
sum. (This would imply that the other two-way interactions between these variables do exist, 
even though they were not large enough to be reported in McGee et al.)  
 
The present paper is concerned with understanding a phenomenon, interaction, that may 
appear even in 2x2 tables. For simulation experiments, an enormous design space may be of 
interest --- there is a case study in Kleijnen et al., 2005, for which the starting point was 40 
factors each at 40 levels --- and it should be conceded that the priorities for data processing 
may be utterly different. Note also that when interaction is only quantitative, rather than 
crossover, there is a choice over how seriously to take it, as it may be possible to find some 
reasonably simple and meaningful transformation of the dependent variable such that there is 
no longer any interaction.  
 
McGee et al. were concerned with logistics in a military context. Other examples of 
interaction may be found in actual military operations. From a defender’s point of view, it is 
bad to make mistakes, and it is bad if the ground attacker has good technology --- but the 
effect of a technology may be much greater when the defender makes a certain type of 
mistake, leading to utterly one-sided combat. Examples of this include the combination of air 
superiority and failure to detect a ground attack (being surprised is a disaster when the 
defenders are sheltering rather than manning their vehicles), and the combination of advanced 
sights and inadequate concealment of targets (advanced sights that penetrate darkness and 
sandstorm are only useful if the defenders fail to hide their vehicles behind a hill). Interactions 
between different errors by the defenders and between defenders’ errors and attackers’ 
technology were examined by Biddle (1996). 
 
Argument for 3 x 3 Experiments, Rather than 2 x 2 
Let the categories of x1 be A and B, the categories of x2 be C and D, and the observations of 
the dependent variable y be as follows. 
 

             C           D 
A           1           4 
B           3           2 

 
There is “crossover” interaction: moving from C to D increases the response in condition A, 
but decreases it in condition B. Further, moving from A to B increases the response in 
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condition C, but decreases it in condition D. 
 
Suppose we are lucky enough to have a theory that specifies what it is about x1 and x2 that is 
adding together and determining the level of response, and roughly how much of it is 
associated with A, B, C, and D. Without loss of generality, these amounts can be taken as 0, 
1, 0, and 2, respectively. 
 
• First, let us add these together, and let the result be a total t.         

             C (0)      D (2) 
A (0)         0           2 
B (1)         1           3 

 
The totals t, in order from 0 to 3, are shown below along with the corresponding y’s. 

t:       0      1      2      3 
y:      1      3      4      2 

 
Thus a theory in which the quantities add together, and then y is an inverted-U shaped 
function of the result (i.e., it first increases, then decreases), will explain the dataset. 
 

• Second, let us subtract the quantities, and call the result a difference d.         
             C (0)      D (2) 
A (0)         0           2 
B (1)        -1           1 

 
The differences d, in order from -1 to 2, are shown below along with the corresponding y’s. 

d:     -1      0      1      2 
y:      3      1      2      4 

 
Thus a theory in which the quantities are subtracted, and then y is a U-shaped function of the 
result (i.e., it first decreases, then increases), will explain the dataset. 
 
Thus there will always be two different theories available to explain a 2x2 table. (Even more 
theories will be available if there are no preconceptions about the quantities associated with x1 
and x2.) In the case where small values of y are better than high values, the first theory says 
that a good outcome occurs when the total t is either decisively small or decisively large, with 
poorer outcome resulting from intermediate values; and the second theory says that a good 
outcome occurs when there is an approximate match between the values associated with x1 
and x2. Hutchinson (2008) discussed this in the context of the dependence of house prices on 
characteristics of the house and characteristics of its location. The two competing theories 
there were that for a house to be highly valued, (a) it and its location should in total be either 
highly urban or highly suburban, not in between, or (b) there should be a match between the 
characteristics (in an urban vs. suburban sense) of the house and its location.  
 
Are these really different theories, or is one somehow a disguised version of the other? How 
can a decision be made between them? Yes, they are different, as can be seen by considering 
the result when a category intermediate between A and B is paired with a category 
intermediate between C and D. 
 
• The sum of two intermediate quantities is intermediate, neither decisively small nor 

decisively large, so the first theory predicts the outcome will be poor. 
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• There is an approximate match between the category of x1 and the category of x2, so the 
second theory predicts the outcome will be good. 

 
Consequently, a 3x3 table of results will enable us to decide between the two theories. 
 
Example Concerning Compatibility Between a Message and Its Audience 
Attempts to change attitudes and behaviour have often had disappointing results. Yet great 
changes in public sentiment have occurred in regard to some issues in recent decades (e.g., 
smoking is less tolerated). An idea that has been proposed to explain this variation is that the 
tone of a message needs to match the personality of the audience receiving it. If the necessity 
of matching message to audience is a reality, it refers to crossover interaction: one thing is 
superior to another in condition 1, but is inferior in condition 2.  
 
Goldstein (1959) found that a strong fear appeal receives greater acceptance among those he 
referred to as copers than among those he referred to as avoiders, while a minimal fear appeal 
receives greater acceptance among avoiders than among copers. He was able to refer to other 
literature supporting the idea of individual differences in reactions. There has been much 
subsequent research. According to a review by Atkin (2001, p. 23), “Effectiveness can be 
increased if message content, form, and style are tailored to the predispositions and abilities of 
the distinct subgroups”. Later in that review (pp. 31-32), there is discussion of mechanisms 
causing health campaigns to fail. These mechanisms will apply to some audiences and in 
some circumstances, while for other audiences and in other circumstances, the campaign 
would have its intended effect. Evidently, then, the hypothesis is that what matters is the 
difference between some aspect of presentational style (e.g., how graphic and threatening it 
is) and some aspect of the people receiving the message (e.g., the extent to which they are 
sensation seekers), with effectiveness declining either side of some optimum. Jones and Owen 
(2006) draw attention to the variety of different findings concerning the effect of level of 
threat on likelihood of behavioural change, including the possibility of an inverted-U 
relationship. 
 
The implication of the present paper is that if it is credible that maximum change in attitude or 
behaviour occurs when the difference between excitement (for example) of the message and 
of the audience is small, it will also be possible to invent a theory saying that excitement as a 
characteristic of the message and excitement as a characteristic of the audience add together, 
and maximum change occurs when the total is either small or big and is smaller in between. 
But perhaps it is unappealling that maximum change occurs when total excitement is either 
small or big and is smaller in between? The rely to this is that it is difficult to move from an 
abstract model to an appropriate name, and the problem may lie in the name. Suppose that 
“excitement” is really a distinction between excitement and rationality. Theorise that 
maximum change occurs when either total excitement is big or total rationality is big (and is 
smaller in between) --- the idea that was unappealling now has a certain plausibility. 
 
Discussion 
To interpret the results from the multi-factor study of McGee et al., there were several steps. 

• Propose a theory, in the sense of identifying that several things are expected to have a 
positive effect. 

• Code the factors in such a way that all their individual effects will be positive. 
• After fitting a model with individual effects and interactions, examine whether the 

interactions are positive or negative. 
• When the interactions are found to be negative, conclude that it appears there are 

decreasing returns for effort. 
 
Having a theory also appears important when there is crossover interaction. 

• Faced with the puzzle of opposite effects in different circumstances, even the general 
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idea of a U-shaped or inverted-U shaped dependence is a step forward. 
• Two specific proposals are potentially of wide application: small sum or large sum 

both being good, or small difference being good. 
• Then one needs some reason to think that category E (for example) lies between A 

and B on factor x1 and that category F (for example) lies between categories C and D 
on factor x2: the result for the combination EF will decide between the two proposals. 

 
When an interaction is found, there is naturally a demand for theory to explain the 
complicated result. It seems fair to conclude that quite simple ideas may help, and may even 
suggest future lines of research. 
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